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Abstract

A key component of the Natural Language Pro-
cessing (NLP) pipeline is Sentence Boundary
Detection (SBD). Erroneous SBD could affect
other processing steps and reduce performance.
A few criteria based on punctuation and cap-
italization are necessary to identify sentence
borders in well-defined corpora. However, due
to several grammatical ambiguities, the com-
plex structure of legal data poses difficulties
for SBD. In this paper, we have trained a neu-
ral network framework for identifying the end
of the sentence in legal text. We used sev-
eral state-of-the-art deep learning models, an-
alyzed their performance, and identified that
Convolutional Neural Network(CNN) outper-
formed other deep learning frameworks. We
compared the results with rule-based, statistical,
and transformer-based frameworks. The best
neural network model outscored the popular
rule-based framework with an improvement of
8% in the F1 score. Although domain-specific
statistical models have slightly improved per-
formance, the trained CNN is 80 times faster
in run-time and doesn’t require much feature
engineering. Furthermore, after extensive pre-
training, the transformer models fall short in
overall performance compared to the best deep
learning model.

1 Introduction

From linguistic theory, a sentence is a textual seg-
ment or span of one or more grammatically correct
words representing a complete thought. Declara-
tive statements, questions, exclamations, requests,
commands, and suggestions can all be expressed
in sentences. A grammatical subject and grammat-
ical predicate are typically present in an expres-
sive sentence. The person, place, or object (includ-
ing abstract concepts) that the sentence is about is
the grammatical subject, which is typically a noun
phrase, and a verb phrase serves as the grammatical
predicate(Savelka et al., 2017).

It is quite simple for a person to separate a given
text into sentences. However, one realizes how dif-
ficult this task is when attempting to condense this
segmentation into rules that a machine could follow.
Many Natural Language Processing (NLP) applica-
tions, including part-of-speech taggers, named en-
tity recognition, document indexing, and question-
answering, use sentence boundary detection as a
crucial pre-processing step. The pre-processing
requirements depend on both the nature of the cor-
pus and the NLP application. Thus SBD faces
challenges when working with a specialized corpus
like legal text because it offers issues distinguishing
between citations, abbreviations, and law-specific
keywords.

Existing SBD systems work well for generic cor-
pora but pose serious issues when dealing with Le-
gal Domain. The language, structure, and content
are very different and more challenging to under-
stand. When working with SBD, the fundamental
presumptions used with the generic corpora are
not always applicable. Legal documents typically
consist of smaller components like paragraphs, sen-
tences, etc. Sentences can be lengthy and contain
intricate structures like lists. There is no standard
formatting structure or style for legal documents,
even those of the same category (such as statutes or
judgments). A sentence segmentation system must
resolve these issues to create pure sentences from
the mixture of such diverse textual elements.

One main difficulty in SBD is to pinpoint poten-
tial boundary spots(e.g. “.”). The uncertainty of the
delimiter period “.” symbol, which has multiple
purposes in the legal domain, makes it challenging.
It could denote the end of a sentence, an acronym,
an initialism, a numerical number (Grefenstette and
Tapanainen, 1994), or part of a citation in legal text.
To determine if a punctuation character is actually
a sentence end marker, a sentence boundary de-
tection system must to resolve the issue of using
ambiguous punctuation characters.
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With this motivation of identifying the potential
end-of-sentence marker, we build a deep-learning
architectural framework using the context at the
character level surrounding the period as input.

The main contribution of this paper is that we
use a context window-based deep learning frame-
work for sentence boundary detection in legal text.
We compared various deep learning models, identi-
fied the best framework, and compared the models
with the existing state-of-the-art rule-based and sta-
tistical models. We also compared the deep learn-
ing model with various transformer architectures
like LEGAL-BERT(Chalkidis et al., 2020) and XL-
Net(Yang et al., 2019).

The rest of the paper is organized as follows: Sec-
tion 2 provides an existing literature summary of
earlier studies about sentence boundary detection.
Section 3 gives a brief description of the dataset
and its associated pre-processing. We describe our
methodologies and the suggested neural network
architecture in Section 4. Section 5 covers results
with evaluation techniques and performance com-
parisons. Finally, the paper concludes with some
future steps in Section 6.

2 Related Work

Sentence Boundary Detection in a normal English
text is regarded as an answered problem with robust
methods. In the NLP literature, several methods
for identifying sentence borders have been studied,
encompassing algorithms and models ranging from
rule-based, statistical, and machine learning-based
models. Several techniques for recognizing sen-
tence boundaries across various corpora are pre-
sented in the seminal paper(Read et al., 2012).

Decision tree algorithm, Support Vector Ma-
chines (SVM)(Gillick, 2009), Bayesian networks,
and unsupervised methods like Punkt(Kiss and
Strunk, 2006) are among the various algorithms
for generic SBD. The identification of sentence
boundaries in speech transcriptions is crucial for en-
hancing readability and supporting later language
processing modules. In (Liu et al., 2005), prosodic
and textual information sources are used to iden-
tify speech sentence boundaries, and (Donabauer
et al., 2021) detect sentence boundaries and speaker
changes in the unpunctuated text. Recently a well-
known rule-based model called Pragmatic Sentence
Boundary Disambiguation(pySBD)(Sadvilkar and
Neumann, 2020) with more than 98 percent test
coverage was developed as an open-source pack-

age. PySBD supports 22 languages and is robust
in noisy text and domains. We have used pySBD
as our baseline model for comparison. In general,
these algorithms work well for processing text that
adheres to the rules of normal English but operates
poorly in other areas. To yield acceptable find-
ings in fields like medical(Le et al., 2021), scien-
tific(Miah et al., 2022), legal, and finance areas(Au
et al., 2020), the algorithms used are heavily cus-
tomized.

The main issues with current Legal SBD sys-
tems are a lack of compliance with known sentence
patterns, sentence length, and the use of punctua-
tion, particularly periods as non-sentence ending
characters. Legal experts use "linguistic indica-
tions, structure, and semantic interpretations which
interact with domain knowledge" (Wyner and Pe-
ters, 2011). (Savelka et al., 2017) examines the
use of conditional random fields (CRF) models
(Lafferty et al., 2001) for sentence boundary iden-
tification in legal documents since these models
are frequently used for sequence modeling, or as-
signing labels for the items in the connected input
sequence. Here they developed many CRF mod-
els using basic textual features. They employed
an aggressive tokenization technique that divides
the text into more tokens than normal. The to-
kens are represented using simple features like the
length of the token, whether it is a digit or space,
or is written in upper-case or lower-case, etc. A
token’s features are a combination of its charac-
teristics and features obtained from nearby tokens.
For the final model’s training, these correspond-
ing feature extractors were utilized, which led to
an increase in the inference time of the models.
Later (Sanchez, 2019) examined the same dataset
with Punkt, CRF, and Bidirectional LSTM neural
network architecture. They enhanced the perfor-
mance of the Punkt model by training it with an
updated abbreviation set based on the legal text
domain. In neural network architecture, the sen-
tence token is represented by a concatenation of
word2vec(Mikolov et al., 2013) embeddings using
a three-word window and eight features fed as in-
put to the stacked BiLSTM network with a softmax
layer as output. They concluded that this token
classification architecture did not result in an SBD
that was superior to the CRF model.

The issue of detecting sentence boundaries can
be viewed as a classification problem. So our work
is inspired by (Schweter and Ahmed, 2019) which
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Decisions #Docs #Chars #Tokens #Sentences #Average Tokens/Sentence
CC 20 984,756 367,740 8295 19.82
IP 20 932,133 343,831 7,262 21.42
BVA 20 474,478 170,166 3,727 20.73
SC 20 960,890 31,872 602 24.20
Total 80 3,352,257 1,237,414 26,052 21.54

Table 1: Statistics of the dataset

Delimiter #Occurences #Occurrence as EOS
. 45048 17835
: 1221 287
! 28 5
; 2453 18

Table 2: Delimiter and its occurences in the dataset

builds an end-to-end methodology independent of
the effectiveness of any tokenization technique to
make the classification. They developed a general-
purpose framework for identifying the potential
end-of-sentence markers that can be adapted to
multi-lingual benchmarks for 12 distinct languages
which work on zero-shot scenarios resulting in
building a robust, language-independent SBD.

In addition to processing English legal texts,
(Glaser et al., 2021) used CRF and neural network
architectures to find the sentence boundaries in Ger-
man legal documents. They produced and released
a dataset of numerous German legal papers with
annotations. However, none of the previous lit-
erature has applied transformer-based pre-trained
language models for the SBD in the legal domain
at the context level and used domain-specific trans-
former models like LEGAL-BERT.

3 Dataset

The algorithm was trained using a dataset (Savelka
et al., 2017) of 80 court decisions in four different
domains: Cyber Crime (CC), Intellectual Proper-
ties (IP), Board of Veterans (BVA), and the United
States Supreme Court (SC). These decisions were
put in four JSON files of 20 decisions each, along
with the list of offsets that denotes the sentence
boundaries. The complete dataset of 26052 anno-
tated sentences is publicly available. 1 The sum-
mary of the statistics of the four decision sets is
specified in Table 1.

The dataset composition of the delimiter occur-
rences is shown in Table 2. We focused on iden-

1https://github.com/jsavelka/sbd_adjudicatory_dec

tifying the period as a potential end-of-sentence
(EOS) marker even though the method of SBD can
be used for various delimiters. This is because,
compared to other delimiters in legal text, the pe-
riod symbol frequently appears as the EOS markers
(98.3%), and the dataset is insufficient to train deep
learning models for other delimiters. Furthermore,
only 40% of the period’s occurrences in the dataset
are identified as true boundary delimiters, making
it challenging to classify.

3.1 Data Preprocessing
All models were trained using BVA, IP, and SC de-
cisions and tested using CC decisions. The protocol
outlined in (Sanchez, 2019) served as the founda-
tion for the manual sentence demarcation for the
test file. The sentence in the files was extracted us-
ing offset boundaries, and the start and end words
were given the labels BEGIN and END based on
the positions provided in the dataset. This annota-
tion is required for comparison with the baseline
frameworks. For the deep learning model architec-
ture, the character level context window is taken
and retained as input to the model after the period
(delimiter) symbol has been located inside the files.
For the transformer architecture, we extract the
context at the sub-word level.

4 Model Architecture

The architecture of the deep learning framework
is depicted in Fig. 1. This context window-based
model architecture is used for training sequence
classification neural network models. Once the
file identifies the delimiter, the corresponding left
and right contexts with efficient window size are
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Raw chunk Left Context Delimiter Right Context Input Chunk
12d 95. The r 12d 95 . The r 12d 95 The r

Table 3: Example of the input

taken and fed as input to the embedding layer. The
input embeddings from the embedding layer are
provided to the deep learning model framework
and bypassed to an optional attention layer. The
last vector output from this framework is fed into
the dense layer with sigmoid activation. Thus, this
architecture serves as a binary classification model
to determine if the period denotes the end of the
sentence or not.

Dense Layer 

Deep Learning Model 

+

….

Xw-1 Xw+1 Xn

Optional Attention LayerContext vector

Output

Embedding Layer 

X1 X2 Xw+2
….

Left Context Right Context

Boundary
Delimiter

̇Input
….

𝞂

Figure 1: Model Architecture

4.1 Deep Learning Models

Here we used five different architectures of neural
networks: Long Short Term Memory(LSTM)(Gers
et al., 2000), Gated Recurrent Unit(GRU)(Chung
et al., 2014), Bidirectional LSTM(BiLSTM), Bidi-
rectional GRU(BiGRU), and Convolutional Neural
Network(CNN). BiLSTM and BiGRU neural net-
work models were also trained to incorporate the
attention mechanisms(Bahdanau et al., 2014) to at-
tend to and focus on key parts in input sentences.

Each of these models captures information data at
the character level. Given the context of surround-
ing characters, our models identify likely end-of-
sentence markers. Our model takes the concate-
nation of this left and right context excluding the
delimiter. This fixed-size context window is fed
as input to the model. Table 3 shows an example
of the input along with the retrieved left and right
contexts.

4.1.1 LSTM

We employ a typical 128-embedding size LSTM
network with a hidden size of 256. A dropout
probability of 0.2 is used at the hidden layer. The
final output vector from the LSTM is fed to the
dense layer with a sigmoid activation to classify
the output.

4.1.2 BiLSTM

To provide more effect to context, here we used
a Bidirectional LSTM architecture that processes
input text sequences in the forward and backward
directions thus making input size to 512 when feed-
ing to subsequent dense layer. Other factors used
are comparable to the LSTM design.

4.1.3 BiLSTM with Attention

Attention weights are used to incorporate an atten-
tion mechanism into the BiLSTM architecture(Lin
et al., 2017). In this model, soft alignment scores
between each hidden state and the final hidden state
of the LSTM will be computed using attention.
Thus drawing out global dependencies between the
inputs and output using the attention process.

4.1.4 GRU

GRU is a more condensed form of LSTM that uses
fewer parameters as there is no explicit memory
unit. The GRU uses 256 hidden states and an em-
bedding size of 128. During the training process,
We employ dropout with a probability of 0.2 after
the hidden layer.

4.1.5 BiGRU

The design of this framework is identical to that of
BiLSTM, using GRU in place of LSTM.
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4.1.6 BiGRU with Attention
Adding attention to the BiGRU architecture enables
the inputs to interact and determine who deserves
more attention. These interactions and attention
scores are combined to create the outputs.

4.1.7 CNN
We used a 1D convolution layer for the CNN ar-
chitecture with six filters and a kernel size of five.
The output of the convolution filter is concatenated
to represent the context after being fed through a
global max pooling layer. Before the prediction
layer, we apply a 250-dimensional hidden layer
with ReLU activation and a learning rate of 0.001.
A dropout with a 0.2 probability is used during
training.

4.2 Transformer Based Models

In contrast to the deep learning architectures dis-
cussed above, the transformer-based encoder model
reads the input at the subword level as the mod-
els used here are pre-trained using sub-word level
tokens as input. Six subwords on the left and
right of the delimiter period are extracted and con-
catenated without the delimiter to provide input
to the sequence classification model. In our ex-
periments, we have used the pre-trained language
models LEGAL-BERT and XLNet.

4.2.1 LEGAL-BERT
LEGAL-BERT(Chalkidis et al., 2020) is a family
of BERT models designed to aid in legal NLP re-
search. There are three options of LEGAL-BERT
used in the paper for domain adaptation. They are
(i) using the original BERT straight out of the box,
(ii) adding extra pre-training on domain-specific
corpora, and (iii) pre-train BERT from scratch on
domain-specific corpora. Here in our experiments,
we have used legal-bert-base-uncased, a model
trained from scratch in the legal corpora with a
number of output labels fixed as two.

4.2.2 XLNet
In the generalized autoregressive model known
as XLNet(Yang et al., 2019), each subsequent to-
ken depends on every preceding token. XLNet
is "generalized" because it uses a process known
as "permutation language modeling" to capture bi-
directional context. It overcomes the drawbacks
of BERT while integrating the concepts of auto-
regressive models and bi-directional context mod-
eling. We have used xlnet-base-cased models for

our experiments.

4.3 Experimental Setup

We have used the Torch version ‘1.12.1+cu113’ for
implementation and the Hugging Face library 2 for
fine-tuning the pre-trained language models. The
deep learning models were trained for a maximum
of 25 epochs, whereas the transformer models got
trained for ten epochs. The optimal number of
epochs and the model’s training time per epoch are
shown in Table 4. When compared to other models,
it has been found that the transformer models re-
quire around 40 times more training time than CNN
models. The training/validation loss, accuracy, and
F1-score concerning the number of epochs for the
CNN architecture are shown in Fig. 2, 3, and 4,
respectively. In our tests, we experimented with
a one-side context size ranging from 3 to 10 and
observed that the context size of six characters pro-
duces a better result in deep learning models. The
inefficiencies in the fixed-size context input are
padded with extra token embedding(s). Since our
models are trained on period as the only delimiter,
including them in the input did not show any per-
formance improvement. The addition of an extra
input delimiter can be used for extending the same
architecture to handle multiple delimiters(Schweter
and Ahmed, 2019).

With a learning rate of 1e− 3 and a mini-batch
size of 32, all models are trained using averaged
stochastic gradient descent algorithm. The opti-
mizer used is the Adam optimizer(Kingma and Ba,
2015) with binary cross entropy as a loss function.
For pre-trained models, we used a learning rate of
5e− 5. The code used for experimenting with the
models is publicly available. 3
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Figure 2: Loss vs Epoch

2https://huggingface.co/
3https://github.com/NLLP-ML/SBD
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Figure 3: Accuracy vs Epoch
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Figure 4: F1 Score vs Epoch

Model #Epochs Training time/
epoch (in sec)

LSTM 10 1.88
BiLSTM 10 2.87
BiLSTM + attn 10 2.98
GRU 15 1.86
BiGRU 10 2.86
BiGRU + attn 25 3.06
CNN 15 1.78
LEGAL-BERT 10 94.24
XLNet 4 106.61

Table 4: No: of epochs with average training time

Moreover, the number of trainable parameters is
also higher for transformer-based models, as shown
in Table 5. Thus it can be trained effectively with
the help of GPU architectures. The CNN models
are the best in model size and number of trainable
parameters.

Model Model size # Parameters
LSTM 1.55 MB 4,08,449
BiLSTM 3.21 MB 8,03,969
BiLSTM + attn 3.21 MB 8,03,969
GRU 1.18 MB 3,09,633
BiGRU 2.31 MB 6,06,337
BiGRU + attn 2.31 MB 6,06,337
CNN 116 kB 29,275
LEGAL-BERT 418 MB 110M
XLNet 449 MB 110M

Table 5: Number of trainable parameters

5 Results and Discussion

We organize the results into three subsections. The
first two sections focus on evaluation patterns used
in our research to compare with the existing state-
of-the-art models. In the first section, we compare
the deep learning models against the baseline mod-
els based on offset boundaries. The second evalua-
tion provides an inference time-based performance
analysis of all the models. The final result sec-
tion covers the performance assessment of the deep
learning models to the architecture for the binary
classification task.

5.1 Evaluation based on Offset Boundaries
Since the baseline models are evaluated based on
offset boundaries, we post-process the results ob-
tained from the deep learning architecture to label
the words representing BEGIN and END tokens.
Each document in the test set was sentence tok-
enized, and the model assigned the predicted labels
for the test file.

Table 6 summarizes the results with other base-
line models. We calculate the F1 score for each
model at the BEGIN and END token levels. We
used the state-of-the-art rule-based pySBD model
and statistical Conditional Random Field(CRF)
model as baselines. The result shows that the CNN
model outperformed other neural network archi-
tectures and the pySBD framework. It is also ob-
served that the statistical CRF has a slightly better
F1 score than the CNN model. This might be due to
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Comparison - Neural Network Models
Model Begin Last Average F1-Score
LSTM 0.809 0.862 0.8354
BiLSTM 0.805 0.853 0.8292
BiLSTM + attn 0.811 0.859 0.8347
GRU 0.809 0.859 0.8342
BiGRU 0.808 0.855 0.8316
BiGRU + attn 0.803 0.851 0.8267
CNN 0.822 0.871 0.8464
LEGAL-BERT 0.827 0.865 0.8462
XLNet 0.801 0.849 0.8247
Comparison - Other Models
Model Begin Last Average F1-Score
Rule-based pySBD 0.751 0.77 0.761
Statistical -CRF(Sanchez, 2019) 0.894 0.892 0.893

Table 6: Comparison at token level (F1- score)

the CRF models’ ability to locate boundary delim-
iters other than periods in the legal text. However,
its performance level depends on how inventively
the features were created.

5.1.1 Error Analysis

The errors in SBD identified by the CNN and CRF
models had many things in common. Both models
found it challenging to identify the characters out of
the sentence as in examples 1 and 2 in Table 7. As
shown in example 3, the CRF models had difficulty
in finding out the true boundary with the delimiter
“:”, but CNN doesn’t have that ability making it
weaker than CRF models. In example 4, the best-
performed CNN model could not capture sentences
with multiple periods, whereas the CRF models
could correctly identify the boundaries. Most of the
citations within sentences are not properly handled
by the baseline CRF models and are considered
as separate sentences (Sanchez, 2019) as shown in
example 5.

5.2 Comparison based on Inference Time

The run-time of the models for the exact hardware
specification is shown in Table 8. It is evident that
the CNN model has the fastest inference time and
that of CRF models, with inference time 84 times
longer than CNN models. The transformer models
LEGAL-BERT and XLNet have the highest infer-
ence times of 112 and 113 seconds, respectively.

5.3 Comparison based on the Model
Architecture

The results of the context window-based deep
learning models are shown in Table 9. Here the
performance of nine deep learning frameworks to
correctly identify the end of sentence boundary in
the legal text was showcased based on accuracy,
precision, recall, and F1 score. The table makes
it clear that CNN performed the best among
others. Employing an attention mechanism to
the LSTM/GRU architecture doesn’t help in
improving performance. The outcomes of the
transformer models were not improved even after
intensive pretraining. We have also observed that
domain-specific LEGAL-BERT performed better
in the F1 score when compared to the generic
XLNet model. In light of the model size and
runtime, the CNN models performed well.

Overall, we found that CNN outperformed the
pySBD model and produced the best results among
the deep-learning models. The best neural network
model outperformed the popular rule-based frame-
work by 8% in terms of the F1 score. In contrast to
statistical models, the deep learning model’s infer-
ence time is 84 times shorter. It is also possible to
parallelize the SBD task at runtime by using batch
processing in the proposed neural network archi-
tecture. LEGAL-BERT performs very close to the
CNN model in the F1 score. Despite having scores
that are on par with the CNN model, the domain-
specific LEGAL-BERT models might be difficult
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Example 1 See, e.g., Cal. Family Code Ann. §760 (West 2004).
Sentence 1: 4 See, e.g., Cal.
Sentence 2: Family Code Ann. §760 (West 2004).

Example 2 In the first case, petitioner David Riley was stopped by a police officer for driving
with expired registration tags.
I A In the first case, petitioner David Riley was stopped by a police officer for
driving with expired registration tags.

Example 3 Decided: November 26, 2002.
Sentence 1: Decided:
Sentence 2: November 26, 2002.

Example 4 Id., at 180.
. . .” Id., at 180.

Example 5 Franklin also moved to dismiss eleven of the fourteen copyright infringement counts
on the ground that Apple failed to comply with the procedural requirements for suit
under 17 U. S. C. § § 410, 411. < 714 F. 2 d 1245 >.
Sentence 1: Franklin also moved to dismiss eleven of the fourteen copyright
infringement counts on the ground that Apple failed to comply with the procedural
requirements for suit under 17 U. S. C. § § 410, 411.
Sentence 2: < 714 F. 2 d 1245 >.

Table 7: Errors in SBD: The actual sentence in the text is marked in grey, while the predicted sentence is marked in
red.

Model Runtime(in sec)
LSTM 0.85
BiLSTM 1.75
BiLSTM + attn 1.71
GRU 0.62
BiGRU 1.19
BiGRU + attn 1.31
CNN 0.16
LEGAL-BERT 112.86
XLNet 113.07
pySBD 5.50
CRF 13.41

Table 8: Inference time of models

to implement because of their high memory re-
quirements and slow speeds. The CNN models
display impressive performance given the model
size, training, and testing times. As a result, CNN
with a small number of trainable parameters out-
performed huge models.

6 Conclusion

This paper uses a context window-based deep learn-
ing model framework for efficient sentence bound-
ary detection in legal text. We compared various
deep learning models, including transformers, for
analysis. We showed that CNN showed a better per-

formance when compared to other deep learning
models. This model also outperformed the popular
rule-based pySBD framework. Even though the
statistical model has a minor performance improve-
ment, the trained CNN had a decent performance
without the requirement of exhaustive feature engi-
neering compared to domain-specific CRF models.
Also, CNN is faster than the state-of-the-art CRF
models by multiple folds compared to the running
time. As a result, the Convolutional Neural Net-
work is the model with the best performance.

In the future, we plan to broaden the scope of our
architecture by including the different delimiters
found in legal text. Also, we aim to chain multiple
models together to improve the SBD performance.
However, we could demonstrate that our model had
an excellent performance and could thus be incor-
porated into NLP pipelines for various downstream
legal tasks.

Limitations

The major limitation addressed in this paper is the
choice of delimiter used in the deep learning archi-
tecture. Here we have only used the period “.” as
the potential end of sentence marker in the legal
text. We could explore more sentence ending punc-
tuation’s like colons “:”, exclamation “!”, etc., to
the architecture and thereby improve the results. In
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Model Accuracy Precision Recall F1-Score
LSTM 0.968 0.974 0.953 0.963
BiLSTM 0.964 0.970 0.945 0.957
BiLSTM + attn 0.967 0.971 0.952 0.961
GRU 0.966 0.973 0.947 0.960
BiGRU 0.967 0.969 0.951 0.960
BiGRU + attn 0.964 0.955 0.954 0.955
CNN 0.981 0.976 0.978 0.977
Legal-BERT 0.979 0.975 0.977 0.976
XLNet 0.970 0.939 0.993 0.965

Table 9: Results of the classification performance of the models

contrast to the pre-trained transformers, which are
trained using sub-word level embedding, we have
analyzed the performance of deep learning models
using character-level embedding. The requirement
of considerable GPU resources is another limita-
tion of transformer-based models. More training
data is also necessary for deep learning models to
produce better results. These limitations can be
future opportunities to facilitate further research.

Ethics Statement

Our work contributes to implementing deep learn-
ing models for sentence boundary detection in legal
text. The dataset used in this paper is publicly avail-
able for research, and we have appropriately cited
it in the article. The code we implemented is made
open to facilitate future research.
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