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Abstract

In the era of billion-parameter-sized Lan-
guage Models (LMs), start-ups have to follow
trends and adapt their technology accordingly.
Nonetheless, there are open challenges since
the development and deployment of large mod-
els comes with a need for high computational
resources and has economical consequences.
In this work, we follow the steps of the R&D
group of a modern legal-tech start-up and
present important insights on model develop-
ment and deployment. We start from ground
zero by pre-training multiple domain-specific
multi-lingual LMs which are a better fit to con-
tractual and regulatory text compared to the
available alternatives (XLM-R). We present
benchmark results of such models in a half-
public half-private legal benchmark compris-
ing 5 downstream tasks showing the impact of
larger model size. Lastly, we examine the im-
pact of a full-scale pipeline for model compres-
sion which includes: a) Parameter Pruning, b)
Knowledge Distillation, and c) Quantization:
The resulting models are much more efficient
without sacrificing performance at large.

1 Introduction

Transformer-based Languages Models (LMs) (Rad-
ford and Narasimhan, 2018; Devlin et al., 2019; Liu
et al., 2019) have stormed NLP benchmarks with
state-of-the-art performance, while recently hu-
mongous billion-parameter-sized models (Brown
et al., 2020; Rae et al., 2021; Hoffmann et al., 2022)
have showcased impressive few-shot capabilities.
In addition, multi-lingual LMs (Conneau et al.,
2020) have been also developed demonstrating ex-
ceptional results as well as impressive performance
in zero-shot cross-lingual transfer.

The legal NLP literature is also flourishing with
the release of many new resources, including large

∗ Equal contribution. Work done during capstone projects
in Cognitiv+ (https://www.cognitivplus.com/).

legal corpora (Henderson* et al., 2022), bench-
mark datasets (Chalkidis et al., 2021a; Koreeda
and Manning, 2021; Zheng et al., 2021; Chalkidis
et al., 2022; Habernal et al., 2022), and pre-trained
legal-oriented language models (Chalkidis et al.,
2020; Zheng et al., 2021). Despite this impressive
progress, the efficacy of differently-sized language
models on legal NLP tasks and the importance of
domain (legal) specificity are still understudied,
while the effect of model compression techniques
in model’s performance and efficiency is ignored.

In this work, we aim to shed light in all these di-
rections following model development across three
incremental steps in a pipelined approach:
(a) model pre-training on large legal corpora,
(b) model fine-tuning on down-stream tasks, and
(c) model compression to improve efficiency.

To do so, we initially develop 4 multi-lingual legal-
oriented language models (C-XLMs). We bench-
mark their performance across 5 down-stream legal
NLP tasks, comprising both publicly available and
private datasets, covering both English and multi-
lingual scenarios in several tasks types, i.e., docu-
ment/sentence classification, natural language infer-
ence, and entity extraction. Finally, we experiment
with a full-scale pipeline for model compression
which includes a) Parameter Pruning, b) Knowl-
edge Distillation, and c) Quantization to produce
much more efficient (smaller and faster) models
that can be effectively deployed in production.

Our work aims to provide guidelines to legal-
tech practitioners on model development (pre-
training, fine-tuning, compression) bearing both
performance and efficiency into consideration. Our
findings show that the impact of larger vs. smaller
models, domain-specific vs. generic models and
the efficacy of model compression techniques
varies across tasks, but in general larger domain-
specific models perform better. Via full-scale
model compression, we produce models with per-
formance decrease by 2.3 p.p., while being approx.
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Model Alias #Langs #Layers #Units #Heads #Params Vocab. Size Train. Tokens MLM Acc.

XLM-R base 100 12 768 12 278M 250k 6.3T 74.0
XLM-R large 100 24 1024 16 559M 250k 6.3T 78.9

C-XLM tiny 10 4 128 4 9M 64k 92B 54.9
C-XLM small 10 6 256 4 21M 64k 92B 68.9
C-XLM base 10 12 512 8 71M 64k 92B 77.8
C-XLM large 10 24 1024 16 368M 64k 92B 81.5

Table 1: Model Specifications, Training Tokens processed on pre-training and MLM performance (Acc.) for all
variants of our XLM (C-XLM) models and the XLM-R models of Conneau et al. (2020) considered as baselines.

42× smaller, and approx. 66× faster. We also find
that fully compressed models outperform equally
sized distilled or fine-tuned models.

2 Model Specifications

Following Chalkidis et al. (2020), we pre-train
from scratch legal domain specific transformer-
based language models. Our models are based
on the RoBERTa architecture (Liu et al., 2019),
i.e., trained with the Masked Language Modelling
(MLM) objective, excluding the Next Sentence Pre-
diction (NSP) one used by BERT (Devlin et al.,
2019). In addition, based on the industry needs and
driven by the work of (Conneau et al., 2020), our
models are a multilingual one -usually referred as
XLM in the literature- and supports ten languages
in total (English, French, German, Greek, Spanish,
Italian, Dutch, Polish, Portuguese, Russian).

We pre-train 4 variants of custom XLM mod-
els (C-XLM) starting from a large version with
24 Transformer blocks (layers), each consisting
of 1024 hidden units and 16 attention heads and
continue by decreasing each time by a factor of 2
across all dimensions, i.e., blocks/layers, hidden
units, and attention heads (Table 1).1

3 Pre-Training

3.1 Training Corpora

We pre-trained our models using multi-lingual cor-
pora that consist of regulations and contracts. For
regulations, we used the MultiEURLEX dataset
of Chalkidis et al. (2021b) that comprises 65k EU
regulations officially translated in 24 languages.2.
We also considered additional publicly available
English resources; specifically the 250 US code
books, part of the “Pile of Law” corpus released by

1A minor exception in the tiny version, where we consider
4 attention heads of 32 hidden units per head instead of 2
attention heads with 64 units per head.

2In our work, we consider 9 languages (English, French,
German, Greek, Spanish, Italian, Dutch, Polish, Portuguese).

(Henderson* et al., 2022), along-size 36k UK laws
published by Chalkidis and Søgaard (2022).

Regarding contracts, we considered the
LEDGAR (Tuggener et al., 2020) dataset compris-
ing 900k sections from US contracts in English;
and 60k additional full contracts in English from
a publicly available crawl from EDGAR. Since,
there are no publicly available contracts in the rest
of the languages, we translated these documents
using state-of-the-art Neural Machine Translation
(NMT) systems across all languages of interest.3

3.2 Custom Vocabulary

Relying on the above mentioned resources, we built
a custom vocabulary of 64k sub-word units that bet-
ter fit the documents in the respective domains and
languages of interest. We opted for Byte-Pair En-
codings (BPEs) (Sennrich et al., 2016), similarly to
most recent work on Transformer-based language
models (Radford and Narasimhan, 2018; Liu et al.,
2019; Conneau et al., 2020).

3.3 Masked Language Modelling (MLM)

We pre-trained all variants of C-XLM (our domain-
specific multi-lingual RoBERTa) for 1.1m steps
(gradient updates) in total based on a two-step
approach, similarly to Devlin et al. (2019), i.e.,
pre-train for 1m steps with sequences up to 128
sub-word units, followed by continued pre-training
for 100k steps with sequences up to 512 sub-word
units, always with a batch size of 512 sequences.4

At each example, we mask out 15% of the tokens
in total. We train all models for a maximum learn-
ing rate of 1e−4 with warm-up for the initial (5%)
training steps followed by a cosine decay.

In comparison XLM-R models were pre-trained
for 1.5m steps with batches of 8192 sequences,
which accounts for approx. 63× more training

3We used the OpusMT (en2m) mBART models using the
EasyNMT library.

4This approach aims to a more efficient (compute-friendly)
pre-training, since pre-training with shorter sequences severely
decreases the needed compute and time.
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Figure 1: MLM performance per language across C-XLM model variants depicted with different coloured webs.

Figure 2: Pre-training loss curves of C-XLMs.

tokens processed; the majority of those in high-
resource languages like the ones we consider.

3.4 MLM Results

In Figure 2, we observe the loss curves of differ-
ently sized models during pre-training. While mod-
els are equally poor performing in the very initial
steps, larger models substantially outperform the
smaller counterparts due to their increased capac-
ity (number of parameters). Table 1 presents the
accuracy of our different models. As expected, the
large version (81.5% accuracy) followed by the
base version (77.8% accuracy) of C-XLM outper-
form their corresponding generic XLM-R models
by 2.6% and 3.8% respectively.5 Figure 1 presents
masked language modelling performance in finer
details across languages per model, highlighting
the predominance of our two largest models.6

5A comparison between the XLM-R models of Conneau
et al. (2020) and our models (C-XLMs) is not ideal due to the
different vocabulary used. Nevertheless, it provides a general
idea on pre-training performance on legal specific corpora.

6More fine-grained MLM evaluation (per language and per
document type) can be found in Appendix B.

4 Fine-tuning

4.1 Benchmark - Tasks and Datasets

In this section, we briefly present the evaluation
benchmark that we use, which consist of both pub-
licly available and private datasets. The bench-
mark is diverse covering three task types (docu-
ment, sentence, and token classification) and two
multi-lingual datasets.7 The datasets in detail are:

MultiEURLEX (Chalkidis et al., 2021a), a multi-
lingual dataset for legal topic classification compris-
ing 65k EU laws officially translated in 23 EU lan-
guages.8 Each document (EU law) was originally
annotated with relevant EUROVOC9 concepts by
the Publications Office of EU. We use the 21 ‘Level
1’ labels, obtained by Chalkidis et al. (2021a) from
the original EUROVOC annotations of the docu-
ments. We use a derivative of the original dataset
considering only 1k non-parallel documents per
supported language (9k in total, Section 3.1).10

This is a multi-label document classification task,
thus we evaluate performance using macro- (m-F1)
and micro- (µ-F1) F1 scores.

UNFAIR-ToS (Drawzeski et al., 2021) is a dataset
for detecting unfair clauses in Terms of Service
(ToS) agreements from on-line platforms (e.g.,
YouTube, Facebook, etc.) in 4 languages (English,
German, Italian, and Polish). The dataset has been
annotated on the sentence-level with 8 types of un-

7We do not use the LexGLUE benchmark of Chalkidis
et al. (2022), since it is monolingual (English only) and also
covers tasks that involve litigation, which are out of scope.

8MultiEURLEX is available at https://huggingface.
co/datasets/multi_eurlex.

9EUROVOC is a hierarchically organized taxonomy
of concepts (a hierarchy of labels) available at http://
eurovoc.europa.eu/.

10This is inline with the work of Xenouleas et al. (2022),
where the authors consider a more “realistic” harder version
of MultiEURLEX with less and non-parallel documents.
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Model Alias MultiEURLEX UNFAIR-ToS CNLI Obligations ContractNER
µ-F1 m-F1 Acc. MAE µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

XLM-R (base) 75.3 53.2 86.6 0.17 84.0 81.9 89.7 88.2 92.4 93.9
XLM-R (large) 77.8 63.8 89.0 0.16 86.3 84.7 88.9 87.4 92.8 93.7

C-XLM (tiny) 66.5 46.1 78.2 0.27 70.2 69.2 88.7 87.4 87.2 89.3
C-XLM (small) 72.3 54.7 85.4 0.20 79.7 77.0 90.4 89.0 90.1 92.4
C-XLM (base) 75.3 59.4 87.3 0.18 84.0 82.1 91.2 90.4 92.9 93.9
C-XLM (large) 78.4 65.4 89.7 0.14 85.3 83.0 91.8 90.6 93.2 94.6

Table 2: Overall results of fine-tuned models across all down-stream tasks.

fair contractual terms, meaning terms (sentences)
that potentially violate user rights according to EU
consumer law. Sentences have been also annotated
according to a 3-level fairness score (fair, partially
unfair, clearly unfair). In our case, we examine
the latter task as sentence regression and evaluate
performance using Mean Absolute Error (MAE),
and Accuracy (Acc.) on rounded (discrete) scores.

ContractNLI (Koreeda and Manning, 2021) is a
dataset for contract-based Natural Language Infer-
ence (NLI). The dataset consists of 607 contracts,
specifically Non-Disclosure Agreements (NDAs).
Each document has been paired with 17 templated
hypotheses and labeled with one out of three classes
(entailment, contradiction, or neutral). We exam-
ine a lenient version of this task, where instead of
the full document (NDA), we represent the docu-
ment with a short number of sentences which have
been annotated as rationales for the specific task.
This is a single-label multi-class document classi-
fication task and we evaluate performance using
macro- (m-F1) and micro- (µ-F1) F1 scores.

Contract-Obligations (Chalkidis et al., 2018) is a
proprietary (privately developed) dataset for obli-
gation extraction from contracts (legal agreements).
The dataset consists of 100 service agreements.
Each contract has been split into paragraphs (ap-
prox. 9,400 in total), and labeled with 4 obligation
sub-types, i.e., Obligation, Deliverable, Discretion,
and Prohibition, while some paragraphs are not
relevant, resulting in a total of 5 potential classes.
This is a single-label multi-class document classifi-
cation task. We evaluate performance using macro-
(m-F1) and micro- (µ-F1) F1 scores.

ContractNER (Chalkidis et al., 2017) is a propri-
etary dataset for contract element extraction. The
dataset consists of 3,500 contractual introductions
from several types (service, employment, purchase,
etc.) of contracts. Each introduction (paragraph)

has been labeled with 4 entity types (Title, Con-
tracting Party, Start Date, Effective Date). This is
a single-label multi-class token classification task.
Thus, we evaluate performance using macro- (m-
F1) and micro- (µ-F1) F1 scores on entity level.

4.2 Experimental Set Up

We tune all models conducting a grid search for
learning rates ∈ {1e-4, 3e-4, 1e-5, 3e-5, 5e-5, 1e-6}.
We use early stopping based on validation loss; we
select and report test scores based on the model
with the best validation performance.11

4.3 Fine-tuning Results

Table 2 presents the results of the fined-tuned base-
lines, XLM-R models, (upper zone) and of all the
variants of our C-XLM models (lower zone) for
each downstream task. We hypothesize that the
base and large versions of C-XLM will perform
better compared to their counterpart XLM-R mod-
els. Indeed, the base version of C-XLM always
outperforms XLM-R across all 5 datasets, while
the large version of C-XLM outperforms XLM-R
in all but one (4 out of 5) datasets.

MultiEURLEX: Both large versions of C-XLM
and XLM-R clearly outperform the rest of the mod-
els with the C-XLM outperforming XLM-R by 0.6
p.p. in µ-F1 and 1.6 p.p. in m-F1. Similarly, the
base version of C-XLM outperforms the equivalent
version of XLM-R. Interestingly, the small version
of C-XLM has comparable performance with the
latter while being approx. 13× smaller.

UNFAIR-ToS: Both large and base versions of C-
XLM outperform their counterpart XLM-R models
by 0.7 p.p. in accuracy. Again, the small version
of C-XLM achieves competitive performance to
base-sized models.

11Additional details and development scores are provided
in Appendix A

91



(a) MultiEURLEX

(b) UNFAIR-ToS

Figure 3: Radar plots with per language performance
for the multilingual MultiEURLEX and Unfair-ToS
datasets for all the versions of C-XLM.

ContractNLI: In this task, we find that the large
version of XLM-R outperforms the one of C-XLM
(+1 p.p. in µ-F1 and +1.7 p.p. in m-F1) while both
base models perform comparably. We also note that
the relative differences between differently sized
models are the more intense across all tasks.

Contract-Obligations: On this task, all C-XLM
models except the tiny version outperform the base-
lines (XLM-R). Specifically, the large version of
C-XLM achieves +2.9 p.p. in µ-F1 and +3.2 p.p.
in m-F1 compared to the large version of XLM-R.

ContractNER: Similarly, our C-XLM models out-
perform the corresponding large and base baselines
by approx. 0.5 p.p. in µ-F1. In addition, m-F1 is
higher in our large model by 0.9 p.p., while base
models have identical results. Again, the small
version of C-XLM is competitive to the baseline.

In general trends, we observe that larger models
outperform smaller ones in most cases, and domain-
specific models outperform generic ones, while
using a sunstantially smaller (4×) vocabulary and
be significantly less (63×) pre-trained. The largest
relative differences occur in MULTIEURLEX, a

20-class multi-label classificationtask, and CNLI,
a sentence pair classification task.

Language Parity: Figure 3 provides information
through radar plots, about scores per language for
each variant of C-XLM. We generally observe that
performance varies across languages (e.g., mod-
els perform better in English compared to Ger-
man), while also language performance disparity
varies across models (depicted as differently shaped
webs), and across datasets (e.g., models are better
in English compared to Italian in MultiEURLEX,
but the opposite is true for UNFAIR-ToS).12

We cross out representation disparity as a possi-
ble explanation, since training data equally repre-
sent all languages (equal number of training exam-
ples). Interestingly, pre-training (MLM) accuracy
also does not correlate with the down-stream per-
formance. Based on the aforementioned points, we
can only hypothesize that other qualitative charac-
teristics (idiosyncrasies of a language in a specific
context/domain) are responsible for perfomance
disparities in-between languages.

Algorithm 1 Gradual Compression
if Teacher Size >> Student Size then

S0: Distill model to teacher assistant
S1: Prune model vocabulary and
fine-tune for 1-3 epochs (if needed).
S2: Prune model depth and distill.
S3: Prune model width and re-distill.
S4.1: Optimize computational graph.
S4.2: Apply 8-bit dynamic quantization.

5 Model Compression

5.1 Methodology

To compress and accelerate the inference of fine-
tuned transformer-based models we adopt gradual
compression, a pipeline that combines structured
pruning, knowledge distillation, and post-training
quantization to progressively reach the desired com-
pression rate, summarized in Algorithm 1.13

Step 0 — Teacher Assistant: In case the teacher
is very large and the desired compression rate is
high (e.g., reducing the large version of C-XLM
to the tiny one), teacher assistants (Mirzadeh et al.,
2020) are used to make the transition smoother.

12Refer to Appendix B for detailed results.
13See additional details and results from preliminary exper-

iments in Appendix B.
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Step 1 — Vocabulary Pruning: The first step is to
reduce the model’s vocabulary. Tokens that do not
appear in the training dataset of the down-stream
task are removed. Furthermore, using information
from the tokenizer’s merges, the merge of two to-
kens that exist in the training dataset and individual
tokens that form a merge that, also, exists in the
training dataset are kept as well. After the redun-
dant tokens are removed, the embedding matrix
is reshaped and the new model, if necessary, is
fine-tuned for 1-3 epochs, to restore its original
performance. The intuition behind vocabulary re-
duction is that some word embeddings that were
learned during pre-training might not be useful for
a specific down-stream task, since such words are
rare and their word embeddings would not get up-
dated during fine-tuning, if they did not exist in
the training set (e.g., some words of a multilingual
model would be redundant for a monolingual task).

Step 2 — Depth Pruning: The second step is
to reduce the model’s depth via knowledge dis-
tillation. Similarly to Sun et al. (2019), we find
that using the weights of the first k layers from
the teacher’s original pre-trained (not fine-tuned)
language model produces the most consistent re-
sults. In our implementation, the KL-divergence
between the (softened) teacher’s and student’s pre-
dicted probabilities is chosen as the distillation loss
function. Across all tasks, the distillation loss is,
also, linearly combined with the original loss. For
the multi-label classification task, the cross-entropy
loss is replaced by a binary cross-entropy loss,
again with the (softened) teacher’s and student’s
probabilities as inputs, whereas for the regression
task it is replaced by the mean squared error be-
tween the teacher’s and student’s output logits (Ba
and Caruana, 2014).

Step 3 — Width Pruning: Once the fine-tuned
teacher’s knowledge is distilled to the student
model, structured pruning is applied to reduce the
student’s width. In particular, using TextPruner
(Yang et al., 2022), the top n neurons from the
intermediate fully-connected layers and the top a
attention heads from the multi-head attention lay-
ers that have the smallest impact on the expected
loss are iteratively removed (Michel et al., 2019;
Prasanna et al., 2020). The pruned student model
is re-distilled to restore its original performance.
Although unstructured pruning (Han et al., 2015;
Sanh et al., 2020; Louizos et al., 2018) would prob-
ably lead to higher compression rates with smaller

performance loss, we choose structured pruning
to ensure that the compressed model’s inference
speed is also accelerated.

Step 4 — Graph Optimization & Model Quan-
tization: For the final step, the student’s weights
are quantized to 8-bits, using post-training dynamic
quantization. However, although 8-bit quantization
will reduce the memory footprint by approximately
4x, without specialized hardware there will be
hardly any inference time speed-up. Thus, before
quantizing the student model, using ONNX (Bai
et al., 2019), its computational graph is optimized,
which can provide hardware-independent accel-
eration (Li et al., 2021). In particular, constant
folding –where constant expressions are statically
pre-computed–, redundant node elimination
–where redundant nodes such as identities are
removed without changing the graph structure–
and operation fusion –where multiple smaller
nodes are fused into one, reducing in this way
launch and synchronization overhead (Vasilache
et al., 2018)– are applied.

Why gradual compression? Although gradual
compression can be more time-consuming than,
for example, distilling the teacher’s knowledge in
a student with a smaller predefined size, it offers
more flexibility and control over the whole com-
pression process. When the desired compression
rate is reached gradually, one could better balance
the performance/compression-rate trade-off.

If for example the model is sensitive to reducing
the depth, one could prune the width more aggres-
sively and vice versa. Since the model will only be
compressed once before deployed, it is important
to ensure that the productionized model will per-
form as well as possible, thus, devoting more time
to take careful steps should not be a concern.

5.2 Compression Results

For each down-stream task, the goal is to produce
compressed versions of the large and base C-XLM
that can outperform the fine-tuned small and tiny
variants of C-XLM, while being smaller and faster
in terms of memory and inference speed. Using
Gradual Compression (GC), the final compressed
versions with the small version of C-XLM as a ref-
erence comprise 6 Transformer blocks, 24 attention
heads, and 1024 units, whereas the compressed ver-
sions with the tiny one as a reference consist of 3
blocks, 12 heads and 512 units.
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Model MultiEURLEX UNFAIR-ToS CNLI Obligations ContractNER
µ-F1 m-F1 Acc. MAE µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Top Bound - Performance “Ceiling”

C-XLM (large) 78.4 65.4 89.7 0.14 85.3 83.0 91.8 90.6 93.2 94.6

Gradual Compression — Reference C-XLM (small)

C-XLM (small) (FT) 72.3 54.7 85.4 0.20 79.7 77.0 90.4 89.0 90.1 92.4
C-XLM (small) (KD) 73.3 54.7 81.1 0.25 80.2 78.1 90.1 89.1 91.0 93.1

C-XLM (large) (GC) 74.2 60.4 83.7 0.21 84.5 83.1 92.2 91.3 92.2 93.3

Gradual Compression — Reference C-XLM (tiny)

C-XLM (tiny) (FT) 66.5 46.1 78.2 0.27 70.2 69.2 88.7 87.4 87.2 89.3
C-XLM (tiny) (KD) 64.0 42.0 76.7 0.30 75.3 74.3 89.1 88.1 87.7 90.1

C-XLM (large) (GC) 73.2 57.0 79.6 0.25 80.7 79.2 91.9 90.7 87.6 90.2

Table 3: Model compression results across down-stream tasks. We report the performance for two baselines: (a)
fine-tuning the reference pre-trained C-XLM model (FT), and (b) Knowledge Distillation and Vocabulary Pruning.
where the student is the reference pre-trained C-XLM (KD); alongside the performance of fully gradually com-
pressed (GC) models, i.e., pruned, distilled and quantized (P+KD+Q). We report the model’s performance across
the incremental compression steps (S) presented in Section 5.1 in the Appendix (Table 9).

The large C-LXM used as the teacher is substan-
tially larger (20-40×) compared to the reference
models. To ensure that the transition to compressed
versions is smooth, we first distill it using as stu-
dent the base version of C-XLM, to create a teacher
assistant (Mirzadeh et al., 2020). In every incre-
mental step of GC where knowledge distillation is
applied, the learning rate, temperature and a (the
original and distillation loss weighing) are tuned
using grid search. Our GC compression pipeline is
also compared with a variant of Pre-trained Distil-
lation (Turc et al., 2019), where the teacher’s (or
its assistant’s) knowledge is distilled directly to the
reference (smaller) pre-trained model.

Results are presented in Table 3. We observe
that the compressed versions of the large C-XLM
model (GC) produced by the full-scale compres-
sion pipeline introduced in Section 5.1 always out-
perform both the respective fine-tuned (FT) models
of the smaller versions of C-XLM and the distilled
(KD) ones with a single exception in UNFAIR-ToS.
Similar results can be derived when we consider
the base version of C-XLM as the teacher model.
Results are presented in Appendix B.

The largest relative differences are observed in
the setting where we use the tiny model as a refer-
ence, which indicates that gradual compression is
very effective when higher compression rates are
being considered. Interestingly, in the Obligation
extraction task, the compressed models are able to
outperform the teacher (Upper Bound).

Model Performance Compression Inference
Loss Rate Acceleration

Reference C-XLM (small)

FT -4.1 p.p. 17.4× 34.1×
KD -4.5 p.p. 21.0× 36.2×
GC -2.3 p.p. 41.8× 65.5×

Reference C-XLM (tiny)

FT -9.5 p.p. 40.3× 87.9×
KD -9.1 p.p. 50.9× 94.2×
GC -5.1 p.p. 50.9× 169.8×

Table 4: Averaged performance and efficiency statistics
for each model across all tasks.

Results can be vastly improved if a more fine-
grained network-architecture search is conducted.
For example, in some of the tasks, the largest per-
formance drop occurs during the second step (depth
pruning). This could be prevented if few additional
layers remain, in favor of aggressive width pruning
(step 3).14 However, the goal of our experiments
was to produce competitive results among all tasks,
even with the constraint of using shared predefined
network specifications.

5.3 Efficiency Considerations

In Table 4, we present aggregated (averaged) statis-
tics in terms of efficiency.14 With the small version
of C-XLM as a reference, GC produces models that
are 41.8× smaller and 65.5× faster, while losing

14The size and inference speed of models produced at each
compression step are reported in Appendix B.4.
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Figure 4: Model size (MB) in each compression step
(S) in relevance to the original model, C-XLM (large).

only 2.3 p.p. of performance on average. On the
other hand, the fine-tuned (FT) or distilled (KD)
models have a larger performance drop (by approx.
1-2 p.p.) compared to the GC versions which are
also substantially (almost 2×) faster on average.

With the tiny version of C-XLM as a reference,
GC can produce models that are, on average, 50.9x
smaller and 169.8x faster, while losing 5.1 p.p. of
performance on average. The fine-tuned (FT) or
distilled (KD) models have now substantially larger
performance drop (9 p.p.) highlighting the benefits
of GC in an extreme-compression setting.

In Figure 4, we present the model size reduc-
tion across the incremental GC steps (S0-S4). The
largest size reduction in both settings (small, tiny)
is observed in the quantization step (S4), if we ex-
clude the preliminary distillation step to create the
teacher’s assistant (S0), which reduces the original
model size approx. 4×.15

6 Related Work

6.1 Transformer-based LMs

Devlin et al. (2019) are the first to pre-train
transformer-based language models (BERT) on
large corpora that achieving state-of-the-art re-
sults in generic NLP benchmarks ((Wang et al.,
2019b,a). One year later, Liu et al. (2019) argued
that BERT was significantly under-trained and in-
troduced RoBERTa (Robustly optimized BERT)
using improved pre-training settings (more data,
larger mini-batches, dynamic masking, and a larger
vocabulary) leading to new state-of-the-art results.

15The size compression effect of steps S1-S4 is better de-
picted in Figure 5 in Appendix B where the base version of
C-XLM is the teacher and thus S0 is omitted.

Moreover, multilingually pre-trained models
(Conneau and Lample, 2019; Conneau et al., 2020)
have been developed using a shared vocabulary,
which can later fine-tuned across several languages.
These models have also shown to have exceptional
zero-shot cross-lingual capabilities, a direction that
we do not investigate in this work.

In the NLP literature, domain-specific models
outperform generic ones in domain-specific bench-
marking. Lee et al. (2019) created BioBERT by fur-
ther pre-training BERT of (Devlin et al., 2019) on
biomedical corpora. n the same manner, Alsentzer
et al. (2019) further pre-trained BioBERT on clini-
cal notes, releasing ClinicalBERT. Similarly, Belt-
agy et al. (2019) pretrained BERT model on sci-
entific publications called SciBERT, while Loukas
et al. (2022) released SEC-BERT pre-trained on
US financial filings.

In the legal domain, Chalkidis et al. (2020) re-
leased LegalBERT, a legal-oriented BERT model
pre-trained on diverse English legal corpora, which
outperform generic ones in most legal NLU bench-
mark (Chalkidis et al., 2022) as is CaseLawBERT
of Zheng et al. (2021), a BERT model pre-trained
solely on US case law. Recently, (Henderson* et al.,
2022) released a new legal-oriented larger BERT
model, which is also heavily biased towards legal
proceedings in US-based jurisdictions.

6.2 Model Compression

Unstructured pruning was popularized by Han et al.
(2015), who iteratively located and pruned connec-
tions whose weights were less than a pre-specified
threshold and retrained the sparsed network. In
later work, the idea of learning how to sparsify
models during training was also proposed (Zhu
and Gupta, 2017; Louizos et al., 2018; Sanh et al.,
2020). For Transformer-base models, Sanh et al.
(2020) argued that changes in weights during fine-
tuning must be taken into consideration and pro-
posed movement pruning.

On the other hand, structured pruning produces
smaller (not sparse) models by removing attention
heads (Voita et al., 2019; McCarley et al., 2019;
Michel et al., 2019)), individual (McCarley et al.,
2019; Prasanna et al., 2020) or blocks (Lagunas
et al., 2021) of neurons from fully-connected layers
in a structured manner. We follow this line of work,
since structured pruning improves model compres-
sion in practice (deployment of smaller models),
contrary to unstructured pruning which sparsify
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networks (deployment of sparse, but equally-sized
models comparing to the original ones).

Another approach to reduce the memory foot-
print of neural networks is quantization, i.e., map-
ping the real-valued parameters and activations
over a fixed set of discrete numbers to minimize
the number of bits required to store them. When
transformer-based models are quantized to 8-bits,
the models’ memory overhead is reduced approxi-
mately by 4x (Bondarenko et al., 2021), while the
matrix multiplication computational cost can be re-
duced by 3.7x with the use of specialized hardware.
Junczys-Dowmunt et al. (2018) and Bhandare et al.
(2019)) applied 8-bit post training quantization to
transformer-based models. Zafrir et al. (2019) and
Fan et al. (2020) used quantization aware training
to quantize transformer-based language models.

The last technique that is frequently used to com-
press transformer-based models is knowledge dis-
tillation. With knowledge distillation, a smaller
(student) network is trained to mimic the behavior
of a larger (teacher) network. In particular, in-
stead of training the student network with the true
labels, the teacher’s predictions are used as a tar-
get (response-based knowledge distillation), which
are usually “softened” to better capture similarities
across classes (Hinton et al., 2015).

Along with the teacher’s predictions, informa-
tion from the teacher’s intermediate states (feature-
based knowledge distillation) such as hidden states
(Sun et al., 2019), embeddings (Jiao et al., 2020)
and attention distributions (Sun et al., 2020) have
been used, an interesting direction that we do not
explore in this work.

7 Conclusions

Following model development across all three
incremental steps of the examined pipelined ap-
proach, we make the following observations:

(a) Larger models outperform smaller ones; the
performance increase varies across tasks.

(b) Domain-specific models outperform generic
ones, although gains are decreased consider-
ing much large models.

(c) Fully compressed (pruned, distilled, and quan-
tized) models severely outperform equally
sized distilled or fine-tuned models.

To conclude, our guidelines to LegalTech practi-
tioners who aim to build effective, but also efficient
models, can be summarized in four general points:

1. Pre-train large-scale domain-specific lan-
guage models, if possible; in case there are no
such models already available.

2. Fine-tune the largest possible model available
based on your compute capabilities.

3. Compress the fine-tuned models to derive
much smaller models that can efficiently be
deployed in production; consider a suitable
compression rate to balance the performance /

efficiency trade-offs.

4. Follow a full-scale compression pipeline (Vo-
cabulary Pruning, Parameter Pruning, Knowl-
edge Distillation, Graph Optimization and
Quantization) for best results.

Broader Impact and Ethics Considerations

In this sections, we would like to discuss the
broader impact and ethical considerations with re-
spect to the use of data, privacy issues and environ-
mental considerations.

Use of Data In this work, we considered two
sources of open publicly available data. The first
source is legislation from EU (Chalkidis et al.,
2021b) published by the EU Publication Office,16

UK (Chalkidis and Søgaard, 2022) published the
UK National Archives,17 and US (Henderson*
et al., 2022) published by the U.S. Government
Publishing Office.18 The second source is US con-
tracts (Tuggener et al., 2020; Borchmann et al.,
2020) published as exhibits in public filings at
SEC-EDGAR.19 As discussed in Henderson* et al.
(2022), the content from these legal sources im-
plicitly encodes privacy and toxicity rules since its
content is handled by governments and courts, con-
trary to generic web material scraped from the web
(Dodge et al., 2021).

In another note, many of these sources that we
used to pre-train our C-XLM models, overlap with
the benchmark datasets we used to evaluate the very
same models, e.g., the MultiEURLEX dataset used
both for pre-training and evaluation (Sections 3.1
and 4.1). As Krishna et al. (2022) recently showed
using downstream datasets make surprisingly good
up-stream (pre-training) corpora, if domain speci-
ficity and such applications is the goal, in contrast

16https://eur-lex.europa.eu/
17https://www.legislation.gov.uk/
18http://www.gpo.gov/
19https://www.sec.gov/edgar/

96

https://eur-lex.europa.eu/
https://www.legislation.gov.uk/
http://www.gpo.gov/
https://www.sec.gov/edgar/


to heavy generalization across domains and acquire-
ment of common knowledge.20

Environmental Considerations Modern large
deep learning models are cost intensive financially
to train, due to the cost of hardware, electricity -
especially in these challenging times-, and cloud
compute (Strubell et al., 2019). They are also envi-
ronmentally expensive due to the operational car-
bon footprint, i.e., carbon emissions, (Dodge et al.,
2022). It has been also demonstrated that the im-
pact of deployment and inference can be equally or
more harmful compared to training with regards to
carbon emissions (Wu et al., 2022), hence effective
counter-measures should be considered to compen-
sate for the financial and environmental cost.

By compressing and accelerating larger mod-
els, the carbon footprint of inference can be sig-
nificantly reduced as we show in Section 5.3;
compensating in this way (on the long run) the
environmental implications of large-scale train-
ing. Furthermore, by decreasing their mem-
ory requirements (model size, and architecture
complexity), predictive models can be hosted on
more environmentally-friendly infrastructure, e.g.,
moderate-compute cloud servers with low memory
and processing power leading to a decreased energy
footprint, contrary to high-end energy-intensive
GPU-accelerated machines.

Privacy Considerations Privacy concerns are also
a critical topic, especially in the legal-tech industry,
since prospect users (law firms, companies, and
civilians etc.) want to process large quantities of
documents, many of which include confidential
information (e.g., private contracts). While there
are many directions to privacy preserving ML via
differential privacy (Abadi et al., 2016; Klymenko
et al., 2022) or federated learning (Ryffel et al.,
2018), the problem of data leakage is practically
unsolved, since the risks of sharing private docu-
ments are not considered and the responsibilities
are transferred to data and cloud security.

Since highly accurate compressed models are
able to be developed (Section 5.1), deployed and
run on moderate-compute servers (Section 5.3),
such technologies can be deployed on premises
as an in-house solution on private clouds; or even
run on the client side on server-client web infras-
tructures, eliminating the need for hosting data re-
motely or using API calls to remote cloud servers

20Of course, we always consider fair evaluation practices,
i.e., no access to the test subsets of evaluation datasets.

over the web, thus effectively contribute in a safer,
more secure (private) AI.

Limitations

Based on our experiments, similarly to the lit-
erature, there no is free lunch with respect to
model compression, and further compressing mod-
els takes a toll on performance. Experimenting
with much larger models and examining their per-
formance and potential for compression, following
the line of work of Rae et al. (2021); Hoffmann et al.
(2022) would be fascinating but we lack resources
to built billion-parameter-sized models, while in-
creasing resources would have a larger impact with
respect to environmental considerations. Based on
the findings of Hoffmann et al. (2022), our models
are not under-trained, and exploring larger mod-
els would have to be followed by an analogous
increase of pre-training data and compute.
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Spiecker genannt Döhmann, and Christoph Bur-
chard. 2022. Mining Legal Arguments in Court
Decisions. arXiv preprint.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, volume 28. Curran
Associates, Inc.

Peter Henderson*, Mark S. Krass*, Lucia Zheng, Neel
Guha, Christopher D. Manning, Dan Jurafsky, and
Daniel E. Ho. 2022. Pile of law: Learning respon-
sible data filtering from the law and a 256gb open-
source legal dataset.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163–4174, Online. Association for Computational
Linguistics.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in c++. In Proceedings of the
2nd Workshop on Neural Machine Translation and
Generation, pages 129–135.

Oleksandra Klymenko, Stephen Meisenbacher, and
Florian Matthes. 2022. Differential privacy in natu-
ral language processing the story so far. In Proceed-
ings of the Fourth Workshop on Privacy in Natural
Language Processing, pages 1–11, Seattle, United
States. Association for Computational Linguistics.

Yuta Koreeda and Christopher Manning. 2021. Con-
tractNLI: A dataset for document-level natural lan-
guage inference for contracts. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 1907–1919, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Kundan Krishna, Saurabh Garg, Jeffrey P. Bigham,
and Zachary C. Lipton. 2022. Downstream datasets
make surprisingly good pretraining corpora.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster
transformers. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10619–10629, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics.

Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun,
Xin You, Hailong Yang, Zhongzhi Luan, Lin Gan,
Guangwen Yang, and Depei Qian. 2021. The deep
learning compiler: A comprehensive survey. IEEE
Transactions on Parallel and Distributed Systems,
32(3):708–727.

99

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3531146.3533234
https://doi.org/10.1145/3531146.3533234
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.nllp-1.1
https://doi.org/10.18653/v1/2021.nllp-1.1
https://doi.org/10.18653/v1/2021.nllp-1.1
https://arxiv.org/abs/2004.07320
https://arxiv.org/abs/2004.07320
https://doi.org/10.48550/arXiv.2208.06178
https://doi.org/10.48550/arXiv.2208.06178
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://arxiv.org/abs/2207.00220
https://arxiv.org/abs/2207.00220
https://arxiv.org/abs/2207.00220
http://arxiv.org/abs/1503.02531
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2022.privatenlp-1.1
https://doi.org/10.18653/v1/2022.privatenlp-1.1
https://doi.org/10.18653/v1/2021.findings-emnlp.164
https://doi.org/10.18653/v1/2021.findings-emnlp.164
https://doi.org/10.18653/v1/2021.findings-emnlp.164
https://doi.org/10.48550/ARXIV.2209.14389
https://doi.org/10.48550/ARXIV.2209.14389
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1109/tpds.2020.3030548
https://doi.org/10.1109/tpds.2020.3030548


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l0 regularization. In International Confer-
ence on Learning Representations.

Lefteris Loukas, Manos Fergadiotis, Ilias Chalkidis,
Eirini Spyropoulou, Prodromos Malakasiotis, Ion
Androutsopoulos, and Georgios Paliouras. 2022.
FiNER: Financial numeric entity recognition for
XBRL tagging. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4419–4431,
Dublin, Ireland. Association for Computational Lin-
guistics.

JS McCarley, Rishav Chakravarti, and Avirup Sil. 2019.
Structured pruning of a bert-based question answer-
ing model. arXiv preprint arXiv:1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distilla-
tion via teacher assistant. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):5191–
5198.

Sai Prasanna, Anna Rogers, and Anna Rumshisky.
2020. When BERT Plays the Lottery, All Tickets
Are Winning. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 3208–3229, Online. As-
sociation for Computational Linguistics.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, H. Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, An-
tonia Creswell, Nat McAleese, Amy Wu, Erich
Elsen, Siddhant M. Jayakumar, Elena Buchatskaya,
David Budden, Esme Sutherland, Karen Simonyan,
Michela Paganini, Laurent Sifre, Lena Martens,
Xiang Lorraine Li, Adhiguna Kuncoro, Aida Ne-
matzadeh, Elena Gribovskaya, Domenic Donato,
Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste
Lespiau, Maria Tsimpoukelli, Nikolai Grigorev,

Doug Fritz, Thibault Sottiaux, Mantas Pajarskas,
Toby Pohlen, Zhitao Gong, Daniel Toyama, Cy-
prien de Masson d’Autume, Yujia Li, Tayfun Terzi,
Vladimir Mikulik, Igor Babuschkin, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Chris Jones,
James Bradbury, Matthew Johnson, Blake A. Hecht-
man, Laura Weidinger, Iason Gabriel, William S.
Isaac, Edward Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis,
Koray Kavukcuoglu, and Geoffrey Irving. 2021.
Scaling language models: Methods, analysis & in-
sights from training gopher. CoRR, abs/2112.11446.
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A Experimentail Details
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tuning, that was adopted in many papers (Lee et al.,
2019; Beltagy et al., 2019; Alsentzer et al., 2019;
Sung et al., 2019). This hyper-parameter tuning
included a light grid search in learning rate ∈ {2e-5,
3e-5, 4e-5, 5e-5}, the number of training epochs
∈ {3, 4}, and the batch size ∈ {16, 32} with a fixed
dropout rate of 0.1. In our research, we tune each
variation of our model based on a grid-search of
learning rate on the following range ∈ {1e-4, 3e-
4, 1e-5, 3e-5, 5e-5, 1e-6}. The batch size is fixed
to 16, and the dropout rate at 0.1. The max se-
quence length is fixed to 512 for MultiEURLEX
and ContractNLI, 256 for ContractNER and 128
for Contract-Obligations and UNFAIR-ToS based
on the training subset statistics. Lastly, Chalkidis
et al. (2020) found that some models may underfit
for 4 epochs. Hence, following their work, we use
early stopping based on validation loss up to 20
maximum train epochs with a patience of 3 epochs.

In every incremental step of GC where knowl-
edge distillation is applied, learning rate, tempera-
ture and a (the original and distillation loss weigh-
ing) are tuned using grid search. in the hyper-
parameter spaces of [1e-5, 3e-5, 5-e5, 7e-5, 1e-4],
[1, 5, 10, 15] and [0.1, 0.3, 0.6], respectively.
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Corpus Tokens per Language
EN EL DE FR ES IT NL PL PT RU All

Contracts 125.3M 111.1M 103.3M 121.7M 122.5M 113.4M 110.7M 89.8M 111.3M 89.6M 1.1B
Regulations 178.7M 71.4M 62.8M 74.0M 77.1M 70.1M 71.2M 31.9M 71.5M - 708.7M

All 304M 182.5M 166.1M 195.7M 199.6M 183.5M 181.9M 121.7M 182.8M 89.6M 1.8B

Table 5: Total tokens used per language per pre-training corpus.

Model CNLI Obligations ContractNER
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Baselines

C-XLM Base (Ceiling Baseline) 84.0 82.1 91.2 90.4 92.9 93.8
C-XLM Tiny (Bottom Baseline) 70.2 69.2 88.7 87.4 87.2 89.3

S1: Vocab Pruning

S1.1: Prune vocabulary at random 79.4 77.2 88.7 87.6 88.5 83.2
S1.2: Prune vocabulary based on training data 84.8 82.9 91.7 90.6 93.2 94.1

Input Model: S1.2 –> S2: Pruning Depth (Layers) + KD

S2.1: Prune layers at random 79.4 77.1 87.6 87.6 88.7 90.3
S2.2: Prune last N layers 80.6 78.8 92.1 91.2 88.8 91.2
S2.3: Prune first N layers 77.8 76.4 90.8 89.2 78.9 83.6
S2.4: Prune every second layer 81.0 79.6 89.9 88.5 88.6 89.4
S2.5: Prune layers with mimimum pair-wise distance 75.6 72.6 91.5 90.5 85.6 87.3

Input Model: S2.2 –> S3: Pruning Width (Heads + FF) + KD

S3.1: Prune heads and FF at random 77.9 75.8 90.6 89.3 82.6 87.1
S3.2: Prune heads and FF based on the exp. sensitivity(L) 78.0 76.1 91.6 90.7 89.5 92.3

Table 6: Preliminiary Experiments to determine which settings produce the most consistent results.

B Additional Results

B.1 Additional Pre-training Results
This section provides additional results regarding
the pre-training process. Table 5 displays the num-
ber of tokens that were included in contracts and
regulations for each language. It should be noted
that during the pre-training, 100% of regulations
and 20% of translated contracts (100% of En-
glish contracts used) were used. Finally, Table 15
presents the evaluation loss and accuracy scores
of the pre-training of the masked language mod-
els. This table provides the overall scores, along
with scores for each document type, language and
document type/language.

B.2 Model Compression Preliminary
Experiments

Before each model was compressed, some prelim-
inary experiments were conducted to determine
which setting in each compression step produces
the most consistent results.

For the first step (Vocabulary Reduction), our

Figure 5: Model size (MB) in each compression step
(S) in relevance to the original model, C-XLM (large).

proposed method, where the model’s vocabulary is
pruned based on information from the training data
and the tokenizer’s merges, was compared with a
random baseline, i.e., the vocabulary is randomly
pruned. In both settings, the exact same percentage
of tokens were kept, and as expected, the random
baseline led to performance deterioration.

102



Task Reduction of Removed Params Removed Params
Tokens (C-XLM Large) (C-XLM Base)

MultiEURLEX 2.52% 1,653,760 826,880
Obligations 26.98% 17,679,360 8,839,680
UNFAIR-ToS 22.54% 14,774,272 7,387,136
ContractNLI 31.83% 20,858,880 10,429,440
ContractNER 24.17% 15,839,232 7,919,616

Table 7: Percentage of usable tokens and parameter reduction after vocabulary pruning for each task.

Model MultiEURLEX UNFAIR-ToS CNLI Obligations ContractNER

XLM-R (Base) 1e-5 3e-5 1e-5 1e-5 5e-5
XLM-R (Large) 3e-5 1e-5 1e-5 1e-6 5e-5

C-XLM (Tiny) 1e-4 3e-4 1e-4 1e-4 1e-4
C-XLM (Small) 1e-4 5e-5 1e-4 5e-5 5e-5
C-XLM (Base) 5e-5 3e-5 5e-5 3e-5 3e-5
C-XLM (Large) 5e-5 5e-5 3e-5 1e-5 5e-5

Table 8: Optimal Learning Rates per downstream task across all models.

For the second step (Depth Pruning), 9 out of the
12 transformer blocks of the base (language) model
were removed and the pruned model was trained
using knowledge distillation. Five different settings
were tested. Encoder blocks were pruned by: (i)
pruning blocks at random, (ii) pruning the last 9
blocks, (iii) pruning the first 9 blocks, (iv) pruning
every second block, and (v) pruning blocks with
the minimum pair-wise distance. For setting (v),
the mean absolute error and the cosine similarity of
the CLS tokens of each encoder block were used
as the metrics (except for the ContractNER task,
were the average of all tokens was used instead of
the CLS one). We found that among all settings,
copying the weights of the first encoder blocks of
the original pre-trained language model produced
the most consistent results.

For the third step (Width Pruning), the model
of the second setting from the second step was
pruned down to 12 attention heads (in total) and
512 neurons in the intermediate fully-connected
layers. Two settings were examined: random prun-
ing and pruning based on the expected loss when
each attention head/neuron was iteratively removed
(Michel et al., 2019; Prasanna et al., 2020). Just
like in step 1, the random baseline performed worse.
Results are summarized in Table 6.

B.3 Additional Fine-tuning Results
This section presents some additional results re-
garding the fine-tuning process. Table 8 displays
the optimal learning rates for each model variation
and baseline that were used during the fine-tuning
process for every different task. Each one was se-
lected through grid search, between learning rates
∈ {1e-4, 3e-4, 1e-5, 3e-5, 5e-5, 1e-6}. We observe
that smaller models favor larger learning rates, i.e.,
1e-4 and 5e-5 in most cases, while larger models fa-
vor smaller learning rates, i.e., 1e-5 and 3e-5. Addi-
tionally, the upper parts of Tables 12 and 13 present
the µ-F1 and m-F1 scores of the fine tuned mod-
els per language, respectively, for MultiEURLEX
task. Lastly, the upper part of Table 14 presents the
Mean Absolute Error (MAE) and accuracy scores
of the fine-tuned models, for UNFAIR-ToS task per
language.

B.4 Additional Compression Results
In this section, some additional experimental re-
sults are presented. First, the percentage of us-
able tokens and the parameter reduction of both
large and base models from the vocabulary prun-
ing step for each task can be found in Table 7. In
Table 11, the model size (in MBs) and the aver-
age inference time (in seconds) of a 32-batch (on
CPU) across all incremental compression steps and
baselines are presented. Inference benchmarking
was conducted using a modern mid-range Ryzen
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7 4700u. In Table 10, model compression results
can be found, across all down-stream task, when
the Base C-XLM is used as a teacher. Lastly, Ta-
bles 12, 13 and 14 summarize the µ-F1, m-F1 of
MultiEURLEX and results of UNFAIR-ToS tasks,
across all languages for each incremental compres-
sion step and baselines.
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Model MultiEURLEX UNFAIR-ToS CNLI Obligations ContractNER
µ-F1 m-F1 Acc. MAE µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Top Bound - Performance “Ceiling”

C-XLM (large) 78.4 65.4 89.7 0.14 85.3 83.0 91.8 90.6 93.2 94.6

Step 0 (TA-KD) 75.2 63.0 88.6 0.16 84.6 82.2 92.8 91.8 93.7 94.9

Gradual Compression — Reference C-XLM (small)

Step 1 (VP+KD) 75.1 62.9 88.5 0.18 84.9 82.9 92.8 91.8 93.6 94.9
Step 2 (DP+KD) 74.4 54.3 83.5 0.22 84.0 81.8 92.6 91.6 92.4 93.2
Step 3 (WP+KD) 73.8 60.8 83.5 0.21 84.5 83.0 92.3 91.4 92.1 93.2
Step 4 (GO+Q) 74.2 60.4 83.7 0.21 84.5 83.1 92.2 91.3 92.2 93.3

C-XLM (small) (FT) 72.3 54.7 85.4 0.20 79.7 77.0 90.4 89.0 90.1 92.4
C-XLM (small) (KD) 73.3 54.7 81.1 0.25 80.2 78.1 90.1 89.1 91.0 93.1

Gradual Compression — Reference C-XLM (tiny)

Step 1 (VP+KD) 75.1 62.9 88.5 0.18 84.9 82.9 92.8 91.8 93.6 94.9
Step 2 (DP+KD) 72.6 58.2 80.6 0.24 80.9 79.3 91.1 90.0 89.7 92.1
Step 3 (WP+KD) 72.5 58.0 79.9 0.25 80.9 79.4 91.6 90.5 87.6 90.4
Step 4 (GO+Q) 73.2 57.0 79.6 0.25 80.7 79.2 91.9 90.7 87.6 90.2

C-XLM (tiny) (FT) 66.5 46.1 78.2 0.27 70.2 69.2 88.7 87.4 87.2 89.3
C-XLM (tiny) (VP+KD) 64.0 42.0 76.7 0.30 75.3 74.3 89.1 88.1 87.7 90.1

Table 9: Model compression results across down-stream tasks. We report the model’s performance across the
incremental compression steps (S) presented in Section 5.1. We also report the performance for two baselines: (a)
fine-tuning the reference pre-trained C-XLM model (FT), and (b) Knowledge Distillation and Vocabulary Pruning.
where the student is the reference pre-trained C-XLM (KD).

Model MultiEURLEX UNFAIR-ToS CNLI Obligations ContractNER
µ-F1 m-F1 Acc. MAE µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

Top Bound - Performance “Ceiling”

C-XLM (Base) 75.3 59.4 87.3 0.18 84.0 82.1 91.2 90.4 92.9 93.8

Gradual Compression — Reference C-XLM (small)

Step 1 (VP+KD) 74.9 60.3 88.2 0.17 84.8 82.9 91.7 90.6 93.2 94.1
Step 2 (DP+KD) 74.4 59.3 82.7 0.23 84.2 82.4 91.3 90.2 91.6 91.7
Step 3 (WP+KD) 73.8 61.5 83.2 0.23 84.8 83.7 92.8 91.5 92.7 94.1
Step 4 (GO+Q) 73.7 61.7 83.2 0.23 84.5 83.1 92.7 91.4 92.7 93.7

C-XLM (small) (FT) 69.9 51.7 85.4 0.20 79.7 77.0 90.4 89.0 90.1 92.4
C-XLM (small) (KD) 72.3 54.7 82.7 0.23 80.0 78.4 90.3 89 92.0 92.4

Gradual Compression — Reference C-XLM (tiny)

Step 1 (VP+KD) 74.9 60.3 88.2 0.17 84.8 82.9 91.7 90.6 93.2 94.1
Step 2 (DP+KD) 71.2 55.7 81.8 0.22 79.1 77.0 92.1 91.2 89.0 90.6
Step 3 (WP+KD) 70.6 55.8 80.8 0.24 78.0 76.1 91.6 90.7 89.8 92.5
Step 4 (GO+Q) 70.4 54.4 80.8 0.24 78.5 76.8 91.6 90.7 89.5 92.3

C-XLM (tiny) (FT) 66.5 46.1 78.2 0.27 70.2 69.2 88.7 87.4 87.2 89.3
C-XLM (tiny) (KD) 66.3 45.3 75.3 0.31 74.6 72.2 86.8 85.6 87.7 89.9

Table 10: Model compression results across down-stream tasks when Base C-XLM is used as a teacher. We report
the model’s performance across the incremental compression steps (S) presented in Section 5.1. We also report the
performance for two baselines: (a) fine-tuning the reference pre-trained C-XLM model (FT), and (b) Knowledge
Distillation and Vocabulary Pruning. where the student is the reference pre-trained C-XLM (KD).

105



Model MultiEURLEX UNFAIR-ToS CNLI Obligations ContractNER
Size Time Size Time Size Time Size Time Size Time

Top Bound - Performance “Ceiling”

C-XLM (large) 1,409 99.3 1,409 21.5 1,409 116.0 1,409 21.3 1409 45.6

Gradual Compression — Reference C-XLM (tiny)

Step 1 (VP+KD) 268 16.1 243 3.6 232 20.2 238 3.3 240 7.4
Step 2 (DP+KD) 159 4.1 134 0.8 123 4.1 129 0.8 131 1.8
Step 3 (WP+KD) 135 1.8 110 0.4 99 1.8 105 0.3 107 0.8
Step 4 (GO+Q) 34 0.8 28 0.1 25 0.8 26 0.1 27 0.3

C-XLM (tiny) (FT) 35 1.3 35 0.2 35 2.0 35 0.2 35 0.5
C-XLM (tiny) (KD) 34 1.3 28 0.2 25 1.3 26 0.2 27 0.5

Gradual Compression — Reference C-XLM (small)

Step 1 (VP+KD) 268 16.1 243 3.6 232 20.2 238 3.3 240 7.4
Step 2 (DP+KD) 196 8.3 171 1.8 159 8.3 165 1.6 168 3.5
Step 3 (WP+KD) 160 4.4 110 0.9 123 4.4 129 0.9 131 1.9
Step 4 (GO+Q) 40 1.8 34 0.3 31 1.8 32 0.3 33 0.7

C-XLM (small) (FT) 81 3.2 81 0.6 81 4.1 81 0.5 81 1.4
C-XLM (small) (KD) 80 3.2 67 0.6 61 3.2 65 0.5 66 1.3

Table 11: Model compression results across down-stream tasks. We report the model’s size in MBs and average
inference time, in seconds, of a 32-batch across the incremental compression steps (S) presented in Section 5.1.
We also report the performance for two baselines: (a) fine-tuning the reference pre-trained C-XLM model (FT),
and (b) Knowledge Distillation and Vocabulary Pruning. where the student is the reference pre-trained C-XLM
(KD).
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Model MultiEURLEX per Language µ-F1
EN FR DE NL IT ES PT PL EL µ-F1

Fine-tuned Models

XLM-R (large) 80.6 78.8 76.1 76.1 78.5 80.1 75.7 75.8 78.7 77.8
XLM-R (base) 77.6 76.9 73.7 74.3 76.3 75.0 75.7 73.2 75.6 75.3

C-XLM (large) 80.5 77.7 76.4 76.8 77.4 79.7 78.3 76.9 82.0 78.4
C-XLM (base) 77.5 76.4 72.3 74.1 75.6 77.4 75.0 72.9 76.5 75.3
C-XLM (small) 69.0 65.7 65.1 62.2 66.4 66.4 66.6 65.3 71.6 72.3
C-XLM (tiny) 69.0 65.7 65.1 62.2 66.4 66.4 66.6 65.3 71.6 66.5

Gradual Compression — Reference C-XLM (tiny)

Step 1 (VP+KD) 78.0 75.9 74.0 73.1 75.2 78.5 75.4 73.4 72.0 75.1
Step 2 (DP+KD) 75.3 72.3 67.2 71.4 73.9 75.9 73.3 72.3 71.9 72.6
Step 3 (WP+KD) 74.1 70.7 69.2 71.9 74.4 74.2 72.9 71.8 73.1 72.5
Step 4 (GO+Q) 74.2 70.8 70.9 72.8 74.7 74.2 73.7 72.5 73.5 73.2

C-XLM (tiny) (KD) 64.9 63.3 60.8 63.2 66.3 63.1 63.8 65.0 65.7 64.0

Gradual Compression — Reference C-XLM (small)

Step 1 (VP+KD) 78.0 75.9 74.0 73.1 75.2 78.5 75.4 73.4 2.0 75.1
Step 2 (DP+KD) 76.5 75.6 71.0 71.4 75.9 77.4 75.5 73.0 73.1 74.4
Step 3 (WP+KD) 75.8 75.2 70.4 70.5 74.4 75.6 73.9 74.2 74.7 73.8
Step 4 (GO+Q) 75.9 75.7 71.7 71.4 74.8 76.1 74.1 73.7 75.5 74.2

C-XLM (small) (KD) 74.2 73.2 71.7 72.7 76.4 73.3 75.5 71.6 70.8 73.3

Table 12: Model compression results for the MultiEURLEX task. We report the model’s per-language µ-F1 across
the incremental compression steps (S) presented in Section 5.1. We also report the performance for two baselines:
(a) fine-tuning the reference pre-trained C-XLM model (FT), and (b) Knowledge Distillation and Vocabulary Prun-
ing. where the student is the reference pre-trained C-XLM (KD).
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Model MultiEURLEX per Language m-F1
EN FR DE NL IT ES PT PL EL m-F1

Fine-tuned Models

XLM-R (large) 64.3 67.3 60.3 61.9 58.1 63.6 57.1 60.0 63.5 63.8
XLM-R (base) 56.2 54.7 50.9 53.6 49.5 52.4 52.2 49.8 52.0 53.2

C-XLM (large) 66.8 63.2 63.0 63.9 55.0 67.1 60.6 61.6 70.7 65.4
C-XLM (base) 59.6 58.8 55.1 59.7 54.0 59.1 59.8 57.1 60.3 59.4
C-XLM (small) 55.9 52.7 50.8 55.8 52.6 57.0 55.6 50.8 56.2 54.7
C-XLM (tiny) 50.1 43.7 47.7 42.6 38.3 46.8 47.6 41.9 44.1 46.1

Gradual Compression — Reference C-XLM (tiny)

Step 1 (VP+KD) 64.3 64.3 60.8 60.8 53.2 66.6 63.3 59.0 56.0 62.9
Step 2 (DP+KD) 58.4 56.9 51.0 55.6 56.4 61.0 55.5 56.2 54.9 58.2
Step 3 (WP+KD) 56.1 62.2 55.5 53.7 53.6 59.7 55.5 54.3 53.9 58.0
Step 4 (GO+Q) 54.8 56.0 54.6 54.2 53.5 58.8 54.0 54.4 51.1 57.0

C-XLM (tiny) (KD) 42.2 41.1 40.9 38.7 41.5 40.9 41.5 41.2 39.4 42.0

Gradual Compression — Reference C-XLM (small)

Step 1 (VP+KD) 64.3 64.3 60.8 60.8 53.2 66.6 63.3 59.0 56.0 62.9
Step 2 (DP+KD) 58.2 55.8 49.9 56.0 50.2 56.5 53.6 49.8 50.8 54.3
Step 3 (WP+KD) 61.9 60.9 56.2 59.1 53.8 61.8 55.5 61.1 58.4 60.8
Step 4 (GO+Q) 61.5 60.8 57.3 59.8 54.7 61.6 55.4 57.6 58.8 60.4

C-XLM (small) (KD) 56.9 54.3 52.8 56.3 54.3 55.1 55.8 48.6 47.8 54.7

Table 13: Model compression results for the MultiEURLEX task. We report the model’s per-language m-F1 across
the incremental compression steps (S) presented in Section 5.1. We also report the performance for two baselines:
(a) fine-tuning the reference pre-trained C-XLM model (FT), and (b) Knowledge Distillation and Vocabulary Prun-
ing. where the student is the reference pre-trained C-XLM (KD).
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Model
UNFAIR-ToS per Language m-F1

EN PL IT DE Total
MAE µ-F1 MAE µ-F1 MAE µ-F1 MAE µ-F1 MAE µ-F1

Fine-tuned Models

XLM-R (large) 0.16 89.3 0.19 87.2 0.14 91.2 0.15 88.3 0.16 89.0
XLM-R (base) 0.14 90.3 0.22 81.7 0.15 88.2 0.17 86.4 0.17 86.6

C-XLM (large) 0.13 90.3 0.17 88.1 0.11 92.2 0.15 88.3 0.14 89.7
C-XLM (base) 0.17 87.4 0.22 83.5 0.13 91.2 0.19 87.4 0.18 87.3
C-XLM (small) 0.17 85.4 0.24 80.7 0.16 90.2 0.21 85.4 85.4 0.20
C-XLM (tiny) 0.27 82.5 0.28 76.1 0.24 79.4 0.30 74.8 78.2 0.27

Gradual Compression — Reference C-XLM (tiny)

Step 1 (VP+KD) 0.13 92.2 0.21 86.2 0.14 90.2 0.22 85.4 0.18 88.5
Step 2 (DP+KD) 0.23 80.6 0.24 78.0 0.22 84.3 0.27 79.6 0.24 80.6
Step 3 (WP+KD) 0.24 80.6 0.24 80.7 0.23 82.4 0.28 75.7 0.25 79.9
Step 4 (GO+Q) 0.24 80.6 0.24 80.7 0.24 82.4 0.28 75.7 0.25 79.6

C-XLM (tiny) (KD) 0.32 76.7 0.30 75.2 0.30 76.5 0.27 78.6 0.30 76.7

Gradual Compression — Reference C-XLM (small)

Step 1 (VP+KD) 0.13 92.2 0.21 86.2 0.14 90.2 0.22 85.4 0.18 88.5
Step 2 (DP+KD) 0.20 83.5 0.25 80.7 0.21 84.3 0.21 85.4 0.22 83.5
Step 3 (WP+KD) 0.20 84.5 0.21 84.4 0.22 81.4 0.21 83.5 0.21 83.5
Step 4 (GO+Q) 0.20 84.5 0.20 84.4 0.22 82.4 0.21 83.5 0.21 83.7

C-XLM (small) (KD) 0.25 81.6 0.28 78.0 0.22 83.3 0.26 81.6 0.25 81.1

Table 14: Model compression m-F1 for the UNFAIR-ToS task. We report the per-language model’s µ-F1 and
MAE across the incremental compression steps (S) presented in Section 5.1. We also report the performance for
two baselines: (a) fine-tuning the reference pre-trained C-XLM model (FT), and (b) Knowledge Distillation and
Vocabulary Pruning. where the student is the reference pre-trained C-XLM (KD).
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Model C-XLM XLM-R

Corpus Subset Tiny Small Base Large Base Large
Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc.

Regulations (EN) 2.46 54.2% 1.62 67.1% 1.11 76.3% 0.97 80.0% 1.36 71.2% 1.07 76.3%
Regulations (EL) 1.89 61.0% 1.24 72.9% 0.85 80.5% 0.74 83.9% 0.93 79.2% 0.68 84.3%
Regulations (DE) 2.52 52.3% 1.60 67.3% 1.02 77.6% 0.84 82.1% 1.20 74.2% 0.89 80.0%
Regulations (FR) 1.84 62.3% 1.16 74.8% 0.75 82.8% 0.65 86.0% 1.01 77.8% 0.77 82.5%
Regulations (ES) 2.01 59.7% 1.31 72.1% 0.88 80.2% 0.78 83.3% 1.19 74.4% 0.93 79.0%
Regulations (NL) 2.43 54.0% 1.54 68.4% 1.00 78.1% 0.85 82.1% 1.25 73.8% 0.91 79.8%
Regulations (IT) 2.06 58.5% 1.32 71.8% 0.88 80.2% 0.77 83.5% 1.16 75.0% 0.88 80.2%
Regulations (PL) 2.23 57.2% 1.44 70.3% 0.94 79.2% 0.75 83.3% 1.08 76.8% 0.80 82.1%
Regulations (PT) 2.20 57.2% 1.43 70.7% 0.98 79.0% 0.87 82.3% 1.23 73.5% 0.94 78.8%

Regulations (All) 2.36 55.1% 1.53 68.9% 1.03 77.7% 0.90 81.4% 1.18 74.6% 0.90 79.8%

Contracts (EN) 1.96 58.0% 1.15 73.7% 0.66 84.2% 0.45 89.1% 1.24 73.0% 0.93 78.8%
Contracts (EL) 2.11 57.2% 1.41 70.0% 0.99 78.0% 0.84 81.8% 1.07 76.8% 0.87 80.9%
Contracts (DE) 2.62 50.0% 1.65 66.2% 1.07 76.5% 0.89 80.7% 1.27 73.0% 1.04 77.4%
Contracts (FR) 1.99 59.9% 1.23 73.9% 0.78 82.5% 0.65 85.9% 1.09 76.8% 0.88 80.7%
Contracts (ES) 2.28 54.7% 1.45 69.2% 0.95 78.6% 0.80 82.5% 1.32 72.4% 1.08 76.4%
Contracts (NL) 2.64 49.7% 1.69 65.2% 1.12 75.5% 0.93 79.9% 1.43 70.6% 1.15 75.5%
Contracts (IT) 2.37 53.4% 1.52 68.4% 1.01 77.8% 0.86 81.7% 1.38 71.5% 1.14 75.9%
Contracts (PL) 2.66 50.2% 1.74 65.1% 1.17 75.0% 0.98 79.4% 1.14 75.3% 0.94 79.5%
Contracts (PT) 2.62 49.8% 1.69 65.4% 1.14 75.4% 0.96 79.6% 1.67 66.8% 1.46 70.2%
Contracts (RU) 1.98 58.2% 1.29 71.6% 0.85 80.5% 0.70 84.6% 1.18 75.4% 0.99 78.8%

Contracts (All) 2.26 56.6% 1.43 71.0% 0.97 79.5% 0.87 82.9% 1.41 71.7% 1.16 76.1%

Overall (EN) 2.28 55.5% 1.44 69.9% 0.93 79.5% 0.76 83.8% 1.32 71.9% 1.02 77.3%
Overall (EL) 2.02 59.4% 1.33 71.7% 0.92 79.5% 0.81 82.9% 1.04 77.5% 0.81 82.1%
Overall (DE) 2.53 52.1% 1.60 67.5% 1.04 77.5% 0.87 81.7% 1.27 73.4% 0.99 78.6%
Overall (FR) 1.92 61.6% 1.20 74.6% 0.78 82.6% 0.69 85.7% 1.09 76.8% 0.86 81.2%
Overall (ES) 2.12 57.9% 1.36 71.2% 0.92 79.6% 0.81 83.0% 1.28 73.1% 1.03 77.6%
Overall (NL) 2.52 52.4% 1.60 67.4% 1.06 77.1% 0.91 81.1% 1.37 72.0% 1.06 77.4%
Overall (IT) 2.20 56.6% 1.40 70.7% 0.94 79.3% 0.83 82.8% 1.30 72.8% 1.03 77.8%
Overall (PL) 2.41 54.3% 1.56 68.3% 1.04 77.6% 0.86 81.7% 1.15 75.9% 0.90 80.5%
Overall (PT) 2.37 54.4% 1.53 68.8% 1.05 77.7% 0.93 81.2% 1.47 69.9% 1.22 74.4%
Overall (RU) 1.98 58.2% 1.29 71.6% 0.85 80.5% 0.70 84.6% 1.18 75.4% 0.99 78.8%

Overall 2.37 54.9% 1.53 69.0% 1.03 77.9% 0.90 81.5% 1.23 74.0% 0.96 79.0%

Table 15: Masked-Language-Models Validation Performance Scores (Cross-Entropy Loss, Accuracy).
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