@inproceedings{liao-etal-2022-conversational,
title = "Conversational {AI} for Positive-sum Retailing under Falsehood Control",
author = "Liao, Yin-Hsiang and
Dong, Ruo-Ping and
Chang, Huan-Cheng and
Ma, Wilson",
editor = "Liu, Bing and
Papangelis, Alexandros and
Ultes, Stefan and
Rastogi, Abhinav and
Chen, Yun-Nung and
Spithourakis, Georgios and
Nouri, Elnaz and
Shi, Weiyan",
booktitle = "Proceedings of the 4th Workshop on NLP for Conversational AI",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlp4convai-1.3",
doi = "10.18653/v1/2022.nlp4convai-1.3",
pages = "21--33",
abstract = "Retailing combines complicated communication skills and strategies to reach an agreement between buyer and seller with identical or different goals. In each transaction a good seller finds an optimal solution by considering his/her own profits while simultaneously considering whether the buyer{'}s needs have been met. In this paper, we manage the retailing problem by mixing cooperation and competition. We present a rich dataset of buyer-seller bargaining in a simulated marketplace in which each agent values goods and utility separately. Various attributes (preference, quality, and profit) are initially hidden from one agent with respect to its role; during the conversation, both sides may reveal, fake, or retain the information uncovered to come to a final decision through natural language. Using this dataset, we leverage transfer learning techniques on a pretrained, end-to-end model and enhance its decision-making ability toward the best choice in terms of utility by means of multi-agent reinforcement learning. An automatic evaluation shows that our approach results in more optimal transactions than human does. We also show that our framework controls the falsehoods generated by seller agents.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2022-conversational">
<titleInfo>
<title>Conversational AI for Positive-sum Retailing under Falsehood Control</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yin-Hsiang</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruo-Ping</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan-Cheng</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wilson</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on NLP for Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Rastogi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georgios</namePart>
<namePart type="family">Spithourakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elnaz</namePart>
<namePart type="family">Nouri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiyan</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Retailing combines complicated communication skills and strategies to reach an agreement between buyer and seller with identical or different goals. In each transaction a good seller finds an optimal solution by considering his/her own profits while simultaneously considering whether the buyer’s needs have been met. In this paper, we manage the retailing problem by mixing cooperation and competition. We present a rich dataset of buyer-seller bargaining in a simulated marketplace in which each agent values goods and utility separately. Various attributes (preference, quality, and profit) are initially hidden from one agent with respect to its role; during the conversation, both sides may reveal, fake, or retain the information uncovered to come to a final decision through natural language. Using this dataset, we leverage transfer learning techniques on a pretrained, end-to-end model and enhance its decision-making ability toward the best choice in terms of utility by means of multi-agent reinforcement learning. An automatic evaluation shows that our approach results in more optimal transactions than human does. We also show that our framework controls the falsehoods generated by seller agents.</abstract>
<identifier type="citekey">liao-etal-2022-conversational</identifier>
<identifier type="doi">10.18653/v1/2022.nlp4convai-1.3</identifier>
<location>
<url>https://aclanthology.org/2022.nlp4convai-1.3</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>21</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conversational AI for Positive-sum Retailing under Falsehood Control
%A Liao, Yin-Hsiang
%A Dong, Ruo-Ping
%A Chang, Huan-Cheng
%A Ma, Wilson
%Y Liu, Bing
%Y Papangelis, Alexandros
%Y Ultes, Stefan
%Y Rastogi, Abhinav
%Y Chen, Yun-Nung
%Y Spithourakis, Georgios
%Y Nouri, Elnaz
%Y Shi, Weiyan
%S Proceedings of the 4th Workshop on NLP for Conversational AI
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F liao-etal-2022-conversational
%X Retailing combines complicated communication skills and strategies to reach an agreement between buyer and seller with identical or different goals. In each transaction a good seller finds an optimal solution by considering his/her own profits while simultaneously considering whether the buyer’s needs have been met. In this paper, we manage the retailing problem by mixing cooperation and competition. We present a rich dataset of buyer-seller bargaining in a simulated marketplace in which each agent values goods and utility separately. Various attributes (preference, quality, and profit) are initially hidden from one agent with respect to its role; during the conversation, both sides may reveal, fake, or retain the information uncovered to come to a final decision through natural language. Using this dataset, we leverage transfer learning techniques on a pretrained, end-to-end model and enhance its decision-making ability toward the best choice in terms of utility by means of multi-agent reinforcement learning. An automatic evaluation shows that our approach results in more optimal transactions than human does. We also show that our framework controls the falsehoods generated by seller agents.
%R 10.18653/v1/2022.nlp4convai-1.3
%U https://aclanthology.org/2022.nlp4convai-1.3
%U https://doi.org/10.18653/v1/2022.nlp4convai-1.3
%P 21-33
Markdown (Informal)
[Conversational AI for Positive-sum Retailing under Falsehood Control](https://aclanthology.org/2022.nlp4convai-1.3) (Liao et al., NLP4ConvAI 2022)
ACL