@inproceedings{russo-2022-creative,
title = "Creative Text-to-Image Generation: Suggestions for a Benchmark",
author = "Russo, Irene",
editor = {H{\"a}m{\"a}l{\"a}inen, Mika and
Alnajjar, Khalid and
Partanen, Niko and
Rueter, Jack},
booktitle = "Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities",
month = nov,
year = "2022",
address = "Taipei, Taiwan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlp4dh-1.18/",
doi = "10.18653/v1/2022.nlp4dh-1.18",
pages = "145--154",
abstract = "Language models for text-to-image generation can output good quality images when referential aspects of pictures are evaluated. The generation of creative images is not under scrutiny at the moment, but it poses interesting challenges: should we expect more creative images using more creative prompts? What is the relationship between prompts and images in the global process of human evaluation? In this paper, we want to highlight several criteria that should be taken into account for building a creative text-to-image generation benchmark, collecting insights from multiple disciplines (e.g., linguistics, cognitive psychology, philosophy, psychology of art)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="russo-2022-creative">
<titleInfo>
<title>Creative Text-to-Image Generation: Suggestions for a Benchmark</title>
</titleInfo>
<name type="personal">
<namePart type="given">Irene</namePart>
<namePart type="family">Russo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mika</namePart>
<namePart type="family">Hämäläinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Alnajjar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Partanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack</namePart>
<namePart type="family">Rueter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Language models for text-to-image generation can output good quality images when referential aspects of pictures are evaluated. The generation of creative images is not under scrutiny at the moment, but it poses interesting challenges: should we expect more creative images using more creative prompts? What is the relationship between prompts and images in the global process of human evaluation? In this paper, we want to highlight several criteria that should be taken into account for building a creative text-to-image generation benchmark, collecting insights from multiple disciplines (e.g., linguistics, cognitive psychology, philosophy, psychology of art).</abstract>
<identifier type="citekey">russo-2022-creative</identifier>
<identifier type="doi">10.18653/v1/2022.nlp4dh-1.18</identifier>
<location>
<url>https://aclanthology.org/2022.nlp4dh-1.18/</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>145</start>
<end>154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Creative Text-to-Image Generation: Suggestions for a Benchmark
%A Russo, Irene
%Y Hämäläinen, Mika
%Y Alnajjar, Khalid
%Y Partanen, Niko
%Y Rueter, Jack
%S Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities
%D 2022
%8 November
%I Association for Computational Linguistics
%C Taipei, Taiwan
%F russo-2022-creative
%X Language models for text-to-image generation can output good quality images when referential aspects of pictures are evaluated. The generation of creative images is not under scrutiny at the moment, but it poses interesting challenges: should we expect more creative images using more creative prompts? What is the relationship between prompts and images in the global process of human evaluation? In this paper, we want to highlight several criteria that should be taken into account for building a creative text-to-image generation benchmark, collecting insights from multiple disciplines (e.g., linguistics, cognitive psychology, philosophy, psychology of art).
%R 10.18653/v1/2022.nlp4dh-1.18
%U https://aclanthology.org/2022.nlp4dh-1.18/
%U https://doi.org/10.18653/v1/2022.nlp4dh-1.18
%P 145-154
Markdown (Informal)
[Creative Text-to-Image Generation: Suggestions for a Benchmark](https://aclanthology.org/2022.nlp4dh-1.18/) (Russo, NLP4DH 2022)
ACL