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Abstract

While implicit embeddings so far have been
mostly concerned with creating an overall rep-
resentation of the user, we evaluate a different
approach. By only considering content directed
at a specific topic, we create sub-user embed-
dings, and measure their usefulness on the tasks
of sarcasm and hate speech detection. In doing
so, we show that task-related topics can have a
noticeable effect on model performance, espe-
cially when dealing with intended expressions
like sarcasm, but less so for hate speech, which
is usually labelled as such on the receiving end.

1 Introduction

While using the syntax or semantics of sentences
and words has been the backbone of Natural Lan-
guage Processing (NLP) tasks for a long time, in-
corporating information about the authors them-
selves is a much more recent addition (Lucas et al.,
2009; Zhang et al., 2018a; Li et al., 2017).

Existing approaches can be broadly grouped into
explicit and implicit user modelling. Explicit rep-
resentations include known information, such as
the user’s occupation or location (Mesgar et al.,
2020), their personality or sociodemographic traits
(Oraby et al., 2018), or even their emotional state
(Rashkin et al., 2018). Implicit models, on the
other hand, use highly dimensional vectors (em-
beddings) to capture abstract differences and simi-
larities between users, without relying on concrete
knowledge (Amir et al., 2017).

However, implicit approaches so far make use
of an averaged user representation, for example
by using a given user’s post history regardless of
content. Social psychology, however, has shown
the impact a given social situation can have on
observable behavior (Ross, 1977), a fact that could
be possible to translate to social media posts as
well. To this end, we define a social situation as a
given topic, such as sports or politics, as well as the
ensuing conversations about these topics. In doing

so, we hope to improve the accuracy of sarcasm
and hate speech detection, NLP tasks that will only
increase in importance as the internet - and social
media - continues to take up more of our time.

To this end, we use User2Vec, one of the earlier
approaches to implicit user modelling, which has
already been shown to increase performance on
sarcasm classification (Amir et al., 2016).

1.1 Research Questions

• Can hate speech detection be improved by
the usage of implicit user representation, in a
similar way to sarcasm detection?

• Can these results be influenced by contextual-
izing the user on specific subsets of conversa-
tional data, implicitly modelling their behav-
ior in different social situations?

• What are the implications behind the observed
results, and how could they be made use of in
future applications?

2 Related Work

2.1 User Embeddings in Social Media

Social media posts and other media can be used
to infer a variety of user characteristics, such as
demographics (Benton et al., 2016), mental health
(Amir et al., 2017) or personality traits (Liu et al.,
2016).

Purely text-based user embeddings are usually
created using an unsupervised approach such as
dimensionality reduction by Latent Dirichlet Allo-
cation (LDA) (Schwartz et al., 2013; Song et al.,
2015; Hu et al., 2017), Single Value Decomposition
(SVD) (Kosinski et al., 2013; Gao et al., 2014) or by
capturing contexts based on the Word2Vec family
of word embeddings (Amir et al., 2016; Preoţiuc-
Pietro et al., 2015). These approaches cluster the
information contained in a given user’s posts in
order to discover patterns and similarities between
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users. Aside from textual content, image content
(Zhang et al., 2018b) and user relations, such as
followers (Mishra et al., 2018), have been used in
order to create user representations.

2.2 Sarcasm Detection
Sarcasm detection describes a classification prob-
lem, often binary in nature, though it can also be
further differentiated in sarcasm as intended by
the authors themselves, or perceived by external
annotators (Shmueli et al., 2020a). Additionally,
an alternative approach can be chosen in order to
differentiate sarcasm from other expressions of hu-
mour or irony (Reyes et al., 2013).

Traditional approaches to detect sarcasm make
use of explicit rules (Veale and Hao, 2010; May-
nard and Greenwood, 2014; Riloff et al., 2013),
as well as statistical measures (Hernández-Farías
et al., 2015; Liu et al., 2014; Tsur et al., 2010), in
order to differentiate sarcastic and non-sarcastic
content. More recent, neural network-based ap-
proaches are able to implicitly construct complex,
highly-dimensional feature representations from
basic inputs, lessening the need for additional do-
main knowledge. These approaches often make
use of RNN and CNN models (Ghosh and Veale,
2016), as well as Attention or Transformer architec-
tures (Potamias et al., 2020). Some of them are also
able to make use of auxiliary information, such as
user embeddings (Amir et al., 2016; Hazarika et al.,
2018).

2.3 Hate Speech Detection
Hate speech detection represents yet another classi-
fication problem, differentiating content expressing
hate or encouraging violence, usually towards re-
pressed minorities, from content without such ten-
dencies. While hate speech can often be confused
with the use of offensive phrases in everyday lan-
guage, more recent approaches have made an effort
to distinguish between these cases (Davidson et al.,
2017; Warner and Hirschberg, 2012; Malmasi and
Zampieri, 2017).

Similar to sarcasm detection, the classification
of hateful content has also evolved from traditional
methods, such as handcrafted rules (MacAvaney
et al., 2019; Mondal et al., 2017), to employing neu-
ral network architectures such as RNNs and CNNs
(Kovács et al., 2021). Especially in social media
environments, emojis have recently been shown to
provide a useful tool to resolve the ambiguity in
words that can both be interpreted in a more neutral

way or as part of hate speech (Wiegand and Rup-
penhofer, 2021). Transformer models also have
found their way into hate speech detection to great
success, used either on their own or as part of more
complex ensembles (Zampieri et al., 2019, 2020).

3 Datasets

3.1 Sarcasm

For the sarcasm classification task we use the Bam-
man dataset, based on the one used by Bamman
and Smith (2015) and Amir et al. (2016). The
dataset differentiates between sarcastic and non-
sarcastic posts, using distant supervision based on
the presence or absence of the hashtags #sarcasm
or #sarcastic, which are removed prior to the ac-
tual task. The dataset contains a total of 8741 posts
by 5797 users, divided into 4972 sarcastic (56.9%)
and 3769 non-sarcastic (43.1%) posts.

3.2 Hate Speech

For the hate speech classification task we use the
Hatexplain dataset (Mathew et al., 2020), more
specifically a subset collected from the social me-
dia platform Gab. This split is done due to differ-
ing post lengths between Twitter and Gab, with the
latter containing a larger volume of hate speech
content (Zannettou et al., 2018). The dataset differ-
entiates between neutral, offensive and hate speech,
with posts being labelled independently by 3 an-
notators using Amazon Mechanical Turk1. The
dataset consists of 8365 posts by 1642 users, di-
vided into 1588 neutral (19.0%), 2487 offensive
(29.7%) and 4290 hate speech (51.3%) posts.

4 Experiments

4.1 Model Architecture

For our experiments, we use a CUE-CNN (Con-
tent and User Embedding Convolutional Neural
Network) architecture, directly derived from the
one used in Amir et al. (2016). A more in-depth
description of the model itself, as well as the hy-
perparameters used during the experiments, can
be found in the appendix. While the model itself
does produce comparable results to state-of-the-art
architecture, such as BERT (Devlin et al., 2018),
they are still comparable with each other, given
that hyperparameters don’t change, as well with
the previous experiments performed by Amir et al.
(2016).

1https://www.mturk.com
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4.2 Run Variations
In order to inspect the influence of different kinds
of user embeddings, we train and evaluate the
model using multiple configurations:

• only word embeddings, serving as a baseline
without additional user embeddings. We use
400-dimensional Word2Vec embeddings to
represent words.

• only user embeddings, using only 400-
dimensional user embeddings created from
the 500 most recent posts per user, excluding
the post being evaluated.

• word + user embeddings, serving as a sec-
ondary baseline, combining the inputs of both
previous runs.

• topic-specific sub-user embeddings, similar
to the previous run, but replacing the regu-
lar user embeddings with embeddings created
from posts that are most likely to belong to
one of 10 topics defined for the dataset. This
run is repeated for every topic.

4.3 Sub-User embeddings
In order to model individual topics present in
the user’s post history, we create sub-embeddings
based on an LDA model (Blei et al., 2001). By
selecting, for each user, 500 posts most likely to
belong to a topic, we assume these embeddings to
represent the user’s behavior in a situation depict-
ing them talking about the given topic, known to
influence behavior in a notable way (Ross, 1977;
Giles and Baker, 2008). These embeddings are
trained just like the averaged user embeddings, but
by sorting the user history based on the percentage
of each post to belong to the given topic, instead of
by date.

An overview over the topics defined for both
datasets can be found in the appendix. Labels are
based on the 30 most salient terms per topic, as
provided by the LDA model.

5 Results

5.1 Randomized Embeddings
Before testing the embeddings themselves, we per-
form initial runs in order to compare embeddings
created using User2Vec with randomly created
ones or those obtained by randomly reassigning ei-
ther the post histories or resulting user embeddings.

These could still provide minor improvements, as
some users authored more than a single post, poten-
tially even present in both training and validation
sets. As the results obtained can be assumed to
be universally representative, we only performed
these runs on the sarcasm dataset.

accuracy

only word embeddings 73.87

random user embeddings 73.63
shuffled posts 73.79
shuffled user embeddings 74.02

Table 1: Results on the sarcasm dataset using varying
degrees of randomly created user embeddings compared
to not using any additional data at all. The best perform-
ing run is highlighted.

As can be seen in Table 1, using purely ran-
dom 400-dimensional vectors provides no improve-
ment over not using them, even resulting in slightly
worse results due to noise caused by the random
values. Using actual user posts, but assigning them
to random users results in slightly better results
compared to purely random embeddings, though
still worse than not using any additional informa-
tion at all. Training user embeddings properly, with
all posts of a given user being used for the same
embedding, and assigning these to random users
finally results in slightly better values compared
to the baseline, though all of the observed results
could reasonably as well be attributed to variance.

We can therefore conclude that the sheer pres-
ence of additional information, presented in multi-
ple levels of randomness, does not provide a notice-
able improvement over solely relying on the textual
contents alone.

5.2 Sarcasm

Experimental results on the sarcasm dataset can be
found in Table 2.

Surprisingly, even only using the user embed-
dings without the actual post contents results in a
performance increase. Since the dataset has been
labelled using marker hashtags, and therefore rep-
resents the author’s intention to write sarcastic con-
tent, we believe that the model is able to accurately
represent intended expressions, as has previously
also been shown by Amir et al. (2016).

As for the topic-specific sub-user embeddings,
all of the topics provided by the LDA model were
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accuracy sarcasm

only word embeddings 73.87 -
only user embeddings 76.83 -

word + user embeddings 80.89 -

topic 1 (politics) 82.19 39.16
topic 2 (everyday) 81.47 73.42
topic 3 (time) 81.59 59.76
topic 4 (sports) 80.89 74.98
topic 5 (media) 81.55 55.46
topic 6 (social media) 81.97 50.98
topic 7 (celebratory) 81.49 45.03
topic 8 (offensive) 81.49 53.32
topic 9 (school) 82.31 49.14
topic 10 (emojis) 81.87 54.76

Table 2: Results over multiple runs performed on the
sarcasm dataset, averaged over 10-fold cross-validation.
Highlighted cells mark the 3 highest scoring runs. The
second column shows the percentage of topic-related
posts labelled as sarcastic.

able to produce results that are significantly better
than when using only the most recent 500 posts per
user. While this could theoretically be attributed
to LDA preferably selecting posts with a higher
amount of tokens, this was not the case. The most
likely conclusion in this case is therefore that the
topic-specific embeddings implicitly filter out stop-
words and other fillers, as well as putting emphasis
on words that carry meaning in the topic context at
hand.

Among these topics, politics, social media, and
school produce slightly better results, which can
be proven to be statistically significant using the
Wilcoxon-Test (Wilcoxon, 1945). Sarcasm is es-
pecially prevalent in online conversations (Han-
cock, 2004), and has been shown to positively cor-
relate with social media reactions such as likes and
retweets (Peng et al., 2019). Using Pearson’s r, we
can obtain a correlation of -0.7305 (p = 0.0165)
between the obtained accuracy scores and the per-
centage of topic-related posts labelled as sarcastic.
We can therefore conclude that certain topics are
indeed more or less likely to harbour sarcastic re-
marks, with those containing a lesser degree of
sarcasm being moderately more useful in detecting
outliers.

5.3 Hate Speech
Experimental results on the hate speech dataset can
be found in Table 3.

accuracy hate sp.

only word embeddings 62.28 -
only user embeddings 54.49 -

word + user embeddings 63.47 -

topic 1 (everyday) 62.80 49.10
topic 2 (jews) 62.62 37.29
topic 3 (gun control) 62.49 39.92
topic 4 (social media) 62.82 46.06
topic 5 (election) 62.26 43.52
topic 6 (religion) 62.69 43.85
topic 7 (terrorism) 62.59 56.08
topic 8 (racism/sexism) 63.12 50.94
topic 9 (australia) 62.79 52.12
topic 10 (foreign politics) 62.88 57.17

Table 3: Results over multiple runs performed on
the hate speech dataset, averaged over 10-fold cross-
validation. Highlighted cells mark the 3 highest scoring
runs. The second column shows the percentage of topic-
related posts labelled as hate speech.

Here, we can only observe minor absolute when
using user embeddings in addition to the posts
themselves, though they are still high enough to
be deemed statistically significant. For this dataset,
the user embeddings alone also perform worse on
their own, which can be attributed to hate speech
generally being considered to be a perceived phe-
nomenon, especially since the dataset in question
has been labelled by external annotators, and not
by the authors themselves. Perceived phenomena
like this have been shown to be impacted by user
embeddings to a lesser extent, due to a potential
discrepancy between assigned labels and the au-
thor’s original intentions (Roussos and Dovidio,
2018; Oprea and Magdy, 2019).

Using any form of topic-based sub-user em-
beddings turned out to slightly lower absolute re-
sults, though some of them are still seen as minor
improvements when evaluating individual posts.
Given the general nature of the Gab social platform
and its tendency to mainly harbour less moderated
conversations regarding political topics (Zannettou
et al., 2018), it can be assumed that all of these top-
ics are subject to hate speech in some form. In order
to prove this, we can again use Pearson’s r, arriv-
ing at a correlation of 0.4873 (p = 0.1531). Based
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on this, we conclude that the individual topics are
not expressive enough, which causes averaged em-
beddings to be able to better capture indicators
pointing towards hateful content. In comparison,
posts belonging to a single topic are more focused
towards it, which represents noise in the scope of
our classification task.

Though the results obtained using topic-based
sub-user embeddings are generally close to each
other and the averaged baseline, the topics
racism/sexism and politics/foreign seem to be
slightly more useful in detecting hate speech than
other topics. Since the dataset was created using
gender- and race-related hate speech targets, this
seems intuitive (Mathew et al., 2020), in addition to
foreign ethnicities generally being a regular target
of hate speech (Silva et al., 2016).

6 Conclusion and Future Work

We showed that user embeddings created using
User2Vec (Amir et al., 2017) provide helpful in-
formation, capable of aiding the classification of
intended expressions that can be observed as a gen-
eral tendency for a given user, such as sarcasm. On
the other hand, their usefulness is generally lower
when used for the classification of perceived ex-
pressions, such as hate speech. Additionally, we
were able to create specialized sub-user embed-
dings, capturing information about the user when
exposed to a specific situation, such as when talk-
ing about school-related topics. Depending on how
these topics relate to the task, we were able to
increase the performance as opposed to using gen-
eralized embeddings. This seems to be especially
true for binary classification tasks, which can be
noticeably impacted by selecting a topic known to
lean heavily towards one of the labels, which we
have shown to be true for politics-related content
being particularly low on sarcasm. We used a rel-
atively simple LDA model to categorize posts by
topic, but more sophisticated approaches should
be able to even more properly select relevant data
points.

Aside from the individual user, social connec-
tions can play a big role, potentially elevating the
usefulness of user embeddings beyond the detec-
tion of characteristical, intended behavior. This
information can be used in order to model user re-
actions, therefore providing insight about how a
given user is perceived by others. Doing so could
overcome one of the limitation of user embeddings,

making it possible to more accurately detect per-
ceived behavior such as hate speech (Roussos and
Dovidio, 2018; Oprea and Magdy, 2019). And even
the word embeddings, which we chose to leave
fixed for all experiments, can be contextualized, as
the information contained in a word can differ de-
pending on the user who authored it (Welch et al.,
2020).

Lastly, by assigning topic probabilities to indi-
vidual posts, these could be used for the filtering
of social media streams based on personal interest.
Extending this approach to the author themselves,
and by assuming that proficiency in a given topic
can be approximated by having authored a high
number of related posts (Ericsson et al., 1993; Er-
icsson, 2002), it could be possible to filter users
based on the topics they are knowledgeable about.

7 Ethical and Privacy Considerations

Given that both the tasks of sarcasm and hate
speech classification, as well as the models pro-
posed in order to tackle it, aim at the labelling
of users and their authored content, as well as a
possible future application extending to a form of
user rating or filtering based on their assumed profi-
ciency, there are certain ethical implications. These
do not only exist for correctly made statements, but
also for potential misclassifications (Rudman and
Glick, 2012). We therefore strongly advise to not
use the proposed models as the sole basis for deci-
sions made concerning the fate of humans, such as
to which candidates to pick given a certain position,
if an assumed level of proficiency would ever be
used to make such a decision.

As for the topic of privacy, all data used by us
in the creation of our models, as well as subse-
quent evaluations, are publicly available on the
Twitter and Gab social media platforms. It should
be noted that the Developer Agreements of these
platforms forbid the usage of their data for the pur-
pose of surveillance or in order to perform discrimi-
natory actions, as exemplary outlined in Pardo et al.
(2013). We therefore explicitly state that the scope
of this work is strictly limited to the evaluation of
models based on publicly available data in order to
approach the problem of topic-based sub-user em-
beddings and their influence on sarcasm and hate
speech classification, and not used to discriminate
or surveil individual users based on the information
obtained.
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A Word embeddings

For our experiments we made use of 400-
dimensional Word2Vec embeddings created from
a Twitter-based corpus (Godin, 2019), both to cre-
ate the user and sub-user embeddings, as well as
creating the inputs to the model itself. The dataset
consists of 3039345 tokens with an OOV (out-of-
vocabulary) rate of 9.0% on the sarcasm dataset, as
well as 13.5% on the hate speech dataset, both sig-
nificantly lower than other, widely used word em-
beddings. This is because the vocabulary contains
several emoji as well as other vocabulary specifi-
cally suited to use on social media data.

Table 4 shows a comparison between the datasets
we previously selected as candidates for use.

B User2Vec

User2Vec aims to create implicit user representa-
tions based on the author’s posting history, maxi-
mizing the probability of a given sentence, defined
by each individual word in that sentence, to belong
to that user:

P (S|userj) =
∑

wi∈S
logP (wi|uj)

+
∑

wi∈S

∑

wk∈C(wi)

logP (wi|ek)

(1)
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vocabulary dimensions OOV (%)

Twitter GloVe 1193514 200
sarcasm 16.2
hate speech 20.2

GoogleNews Word2Vec 3000000 300
sarcasm 23.4
hate speech 25.3

Twitter Word2Vec 3039345 400
sarcasm 9.0
hate speech 13.5

Table 4: OOV words for a set of pre-selected candidate word embeddings, for both of the datasets used during the
experiments.

Here, S = {w0, w1, ..., wN} represents a sen-
tence authored by userj . The probability itself can
be decomposed into 2 formulas, the first one being
conditional on the user representation uj, the sec-
ond one being conditional on a window C of pre-
defined size around the embedding ek of any given
word in the sentence. Since the latter probability
is independent from the user itself, it represents a
static value over all users and does not need to be
considered in the model:

P (S|userj) ∝
∑

wi∈S
logP (wi|uj) (2)

The resulting approximation is very similar
to Paragraph Vectors, a variation on Word2Vec
(Mikolov et al., 2013), creating embeddings for
paragraphs and documents instead of individual
words, when considering each user as its own doc-
ument consisting of the content authored by that
user (Le and Mikolov, 2014). Using a log-linear
model, the probability for each word P (wi|uj) can
be estimated using Softmax as follows:

P (wi|x) =
exp(Wi · x+ bi)∑
k exp(Wk · x+ bk)

(3)

Where W and b represent the weights and bi-
ases of said model and x is the feature vector being
optimized in order to represent the user. The down-
side of this approach is the necessity to iterate over
each word in the vocabulary, which is potentially
very expensive. In order to reduce the cost of this
operation, negative sampling is utilized in order to
minimize the following Hinge-Loss:

L(wi, userj) =
∑

wl∈V
max(0, 1− ei ·uj + el ·uj)

(4)

We chose The following hyperparameters,
adapted from the values published as part of the
User2Vec model:

• 15 negative samples per word.

• Maximum vocabulary size of 50000, though
this limitation was never reached in practice

• Only consider words with a minimum fre-
quency of 5 across the input corpus.

• Initial learn rate of 5e-5, decaying over time
as learn progress slows down.

• 25 maximum epochs, aborting the training
process after not observing progress after 5
epochs (patience).

C Model Architecture (CUE-CNN)

Similar to how images are represented as a 2-
dimensional arrangement of pixels, sentences can
be seen as a list of words, each of which by itself
is represented by a highly-dimensional vector, also
resulting in a 2-dimensional matrix of scalar values.
CNNs can make use of this structure in order to
incorporate local spatial information and not only
process individual words, but also their relation to
neighbouring words. This allows them to interpret
the overall sentence structure, as well as the rela-
tion between individual dimensions of the word
embeddings.

The CUE-CNN (Content and User Embedding
Convolutional Neural Network) model, as shown
on figure 1, combines these embedded sentences S
with pretrained user embeddings U to incorporate
both the text contents themselves, as well as infor-
mation about their authors. By doing so, it takes
into account the user’s post history and usage of
words in relation to other users in the same vector
space. As the user embeddings have previously
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been created based on the same word embeddings
that are also used in order to encode the posts them-
selves, this represents a connection between the
sentence currently being classified, as well as other
sentences authored by the same user in the past
(Amir et al., 2016).

The embedded sentences are first fed to a con-
volutional layer consisting of 3 filters of different
sizes in order to capture spatial relations in differ-
ent granularities. Each filter F gets combined with
sub-matrices of a sentence using a sliding window
approach, with the results being subjected to a non-
linear ReLU activation function α in order to create
feature maps mi of the same size as the filter:

mi = α
(
F · S[i:i−h+1] + b

)
(5)

These filter maps are fed to a max pooling layer
being applied to the maximum length of sentences
present in the dataset, in order to transform them
to scalar values:

fk = [max(m1)⊕ ...⊕max(mM)] (6)

These values are then concatenated over all 3
filters as well as the pretrained embedding of the
sentence’s author Uu, obtaining the representation
of the full model input c. Alternatively, the user em-
beddings can be left empty, measuring the model’s
base performance when only processing the text
contents.

c = [f1 ⊕ f2 ⊕ f3 ⊕Uu] (7)

The combined values are then passed to another
ReLU activation function α, as well as being sub-
jected to dropout, randomly setting a certain frac-
tion of input nodes to zero in order to prevent the
model from overfitting on the training data. A final
dense layer then reduces the vector to the previ-
ously defined number of possible output classes.
The entire model can therefore be formulated as:

P (y = k|s, u; θ) ∝ Yk · α(H · c+ h) + bk

(8)
with θ = {Y,b,H,h,F1,F2,F3,E,U} con-

sisting of - in order - the weights and biases of
the output and hidden layers, the convolutional
filters being applied to the input sentences, the pre-
trained word embeddings used in order to represent
these sentences in matrix form, and pretrained user

embeddings based on the same word embeddings
(Amir et al., 2016).

Both word and user embeddings are frozen and
not updated during training, and the same hyperpa-
rameters are used for all classification tasks, being
as follows:

• 80/10/10 training/validation/test split, created
from 10 identically sized folds and evaluated
using cross-validation. For the final scores,
fold results are summed and averaged.

• 50 epochs using a batch size of 32, without
early stopping or checkpointing.

• Categorical Cross-Entropy Loss independent
of the number of classes, so the model gen-
eralizes beyond binary classification without
the need for change.

• Adadelta optimization, using a learn rate of
0.005, 0.95 momentum and weight decay of
0.001.

• 3 CNN filters, sized at 4, 6 and 8, respectively.

• 200 filters maps as CNN layer output.

• Hidden layer size of 100.

• Dropout probability of 0.15 between the hid-
den and output layer.

Training, validation and test sets are created in a
stratified fashion based on their ground truth labels,
making sure the label distribution in all folds is
representative for the whole dataset.

D Preprocessing

Prior to the experiments, we filtered the datasets
to only include users with at least 1000 authored
historical posts, to ensure there is enough data to
properly evaluate different conditions on each user
in the dataset. Since the datasets each provide user
ids for the Twitter and Gab platform, respectively,
we used these to obtain the post history for each
user. For Twitter, this has been done using the
API, which is limited to the most recent 3000 posts
per user3. For Gab, we used a publicly available
dataset4. We further preprocess each example using
the following pipeline:

3https://developer.twitter.com/en/docs/
twitter-api/v1/tweets/timelines/api-reference/
get-statuses-user_timeline

4https://files.pushshift.io/gab/
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Figure 1: CUE-CNN (Content and User Embedding Convolutional Neural Network) model used for the classification
tasks.

• Squashing all whitespace characters to single
spaces. Social media content in particular can
often contain repeated spaces or newlines, as
well as possible non-standard whitespace char-
acters not part of the pretrained embeddings
and therefore removed during tokenization.

• Converting all text to lowercase, reducing the
amount of OOV (out-of-vocabulary) tokens
and increasing the information that can be
obtained from each datapoint.

• Reducing repeated characters to a maximum
of 3. Social media content is prone to expres-
sions like "wowwwwww!" or "riiiight". While
still unlikely in most cases, this increases the
chances to find an embedding for tokens like
these.

• Replacing all user mentions with @user and
hyperlinks with url. Individual user mentions
and especially web URLs are unlikely to be
present in the embeddings, but their position-
ing and frequency in the text can still be useful
for the task.

• Special tokenization for smileys, which usu-
ally consist of mostly punctuation characters.
They are an important tool to convey emo-
tions in social media environments (Kruger
et al., 2006), so special care is taken in order
to make sure they are left intact.

E Additional experiments

In addition to the datasets described in the main pa-
per, we also ran the same experiments on the SPIRS
dataset, another sarcasm dataset, which addition-
ally contains labels for intended and perceived sar-
casm (Shmueli et al., 2020b). This allows us to
more accurately describe the impact of our method
on these criteria, while leaving the general task the
same.

It should be noted that, while the dataset also
provides additional information in the form of cue,
oblivious, and eliciting tweets, these were not used
for our experiments.

Experimental results on this dataset can be found
in Table 5.

As with the Bamman dataset, we can see that
user embeddings noticeably improve performance
on the dataset. More importantly, though, Table 6
shows the change of misclassification rate for the
intended and perceived parts of the dataset, when
using user embeddings in addition to the word em-
bedding baseline. While we can observe an im-
provement in both cases, it’s more noticeable on
intended sarcasm, whose misclassification rate re-
duced by 54.24%, while the error on the perceived
part only reduced by 44.48%. This observation
seems to prove our assumption that user embed-
dings, at least those solely created from the user’s
post history, are more helpful for the classification
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accuracy sarcasm

only word embeddings 67.44 -
only user embeddings 87.03 -

word + user embeddings 83.73 -

topic 1 (covid-19) 83.88 49.89
topic 2 (sports) 81.36 43.44
topic 3 (politics) 83.59 48.92
topic 4 (race & gender) 84.39 49.87
topic 5 (offensive) 83.18 37.99
topic 6 (media) 82.71 46.19
topic 7 (numbers) 82.68 59.99
topic 8 (love) 81.32 48.05
topic 9 (slang) 84.31 53.72
topic 10 (happiness) 81.57 47.06

Table 5: Results over multiple runs performed on the
SPIRS dataset, averaged over 10-fold cross-validation.
Highlighted cells mark the 3 highest scoring runs. The
second column shows the percentage of topic-related
posts labelled as sarcastic.

of intended expressions.

run error (%)

intended
word embeddings 27.58
word + user emb. 12.62

perceived
word embeddings 39.93
word + user emb. 22.17

Table 6: Distribution of misclassfications on the SPIRS
dataset between intended and perceived sarcasm. When
adding user embeddings, the overall error decreases,
while the relative error on examples labeled as perceived
sarcasm increases.

F Comparing topic-specific sub-user
embeddings

In order to extract the topics used as a basis for
our sub-user embeddings, we create an LDA model
from each dataset’s entire post history. The model
is created using a single pass over the data, ignoring
all tokens appearing either only once or in more
than 99% of posts.

Figure 2 and 3 visualize 10 topics created from
the sarcasm and hate speech dataset’s respective
post history in 2D space, across all users. Each of
these topics represents a subspace of the overall
text corpus, sometimes with partial overlap indicat-
ing a regular overlap between contents. Though, as

Figure 2: Distribution and partial overlap of LDA topics
created from the sarcasm dataset’s post history.

Figure 3: Distribution and partial overlap of LDA topics
created from the hate speech dataset’s post history.

this visualization represents a major dimensionality
reduction from the original 400-dimensional vec-
tor space, not all relations between topics can be
observed this way. We inferred the topic labels by
taking into account the 30 most salient terms per
topic, as presented by the underlying LDA model.

In order to compare the performance between
these topics, we used the Wilcoxon signed-rank
test (Wilcoxon, 1945), after using - for each author
- the 500 posts with the highest probability of be-
longing to a given topic as input into our model.
We performed tests on all possible topic pairs, with
the final results being listed in the tables below, as
well as being referenced in the main paper.
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