@inproceedings{kantharaju-schmer-galunder-2022-extracting,
title = "Extracting Associations of Intersectional Identities with Discourse about Institution from {N}igeria",
author = "Kantharaju, Pavan and
Schmer-galunder, Sonja",
editor = "Bamman, David and
Hovy, Dirk and
Jurgens, David and
Keith, Katherine and
O'Connor, Brendan and
Volkova, Svitlana",
booktitle = "Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)",
month = nov,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlpcss-1.18",
doi = "10.18653/v1/2022.nlpcss-1.18",
pages = "164--169",
abstract = "Word embedding models have been used in prior work to extract associations of intersectional identities within discourse concerning institutions of power, but restricted its focus on narratives of the nineteenth-century U.S. south. This paper leverages this prior work and introduces an initial study on the association of intersected identities with discourse concerning social institutions within social media from Nigeria. Specifically, we use word embedding models trained on tweets from Nigeria and extract associations of intersected social identities with institutions (e.g., domestic, culture, etc.) to provide insight into the alignment of identities with institutions. Our initial experiments indicate that identities at the intersection of gender and economic status groups have significant associations with discourse about the economic, political, and domestic institutions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kantharaju-schmer-galunder-2022-extracting">
<titleInfo>
<title>Extracting Associations of Intersectional Identities with Discourse about Institution from Nigeria</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pavan</namePart>
<namePart type="family">Kantharaju</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sonja</namePart>
<namePart type="family">Schmer-galunder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katherine</namePart>
<namePart type="family">Keith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embedding models have been used in prior work to extract associations of intersectional identities within discourse concerning institutions of power, but restricted its focus on narratives of the nineteenth-century U.S. south. This paper leverages this prior work and introduces an initial study on the association of intersected identities with discourse concerning social institutions within social media from Nigeria. Specifically, we use word embedding models trained on tweets from Nigeria and extract associations of intersected social identities with institutions (e.g., domestic, culture, etc.) to provide insight into the alignment of identities with institutions. Our initial experiments indicate that identities at the intersection of gender and economic status groups have significant associations with discourse about the economic, political, and domestic institutions.</abstract>
<identifier type="citekey">kantharaju-schmer-galunder-2022-extracting</identifier>
<identifier type="doi">10.18653/v1/2022.nlpcss-1.18</identifier>
<location>
<url>https://aclanthology.org/2022.nlpcss-1.18</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>164</start>
<end>169</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Associations of Intersectional Identities with Discourse about Institution from Nigeria
%A Kantharaju, Pavan
%A Schmer-galunder, Sonja
%Y Bamman, David
%Y Hovy, Dirk
%Y Jurgens, David
%Y Keith, Katherine
%Y O’Connor, Brendan
%Y Volkova, Svitlana
%S Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F kantharaju-schmer-galunder-2022-extracting
%X Word embedding models have been used in prior work to extract associations of intersectional identities within discourse concerning institutions of power, but restricted its focus on narratives of the nineteenth-century U.S. south. This paper leverages this prior work and introduces an initial study on the association of intersected identities with discourse concerning social institutions within social media from Nigeria. Specifically, we use word embedding models trained on tweets from Nigeria and extract associations of intersected social identities with institutions (e.g., domestic, culture, etc.) to provide insight into the alignment of identities with institutions. Our initial experiments indicate that identities at the intersection of gender and economic status groups have significant associations with discourse about the economic, political, and domestic institutions.
%R 10.18653/v1/2022.nlpcss-1.18
%U https://aclanthology.org/2022.nlpcss-1.18
%U https://doi.org/10.18653/v1/2022.nlpcss-1.18
%P 164-169
Markdown (Informal)
[Extracting Associations of Intersectional Identities with Discourse about Institution from Nigeria](https://aclanthology.org/2022.nlpcss-1.18) (Kantharaju & Schmer-galunder, NLP+CSS 2022)
ACL