@inproceedings{gnehm-etal-2022-fine,
title = "Fine-Grained Extraction and Classification of Skill Requirements in {G}erman-Speaking Job Ads",
author = {Gnehm, Ann-sophie and
B{\"u}hlmann, Eva and
Buchs, Helen and
Clematide, Simon},
editor = "Bamman, David and
Hovy, Dirk and
Jurgens, David and
Keith, Katherine and
O'Connor, Brendan and
Volkova, Svitlana",
booktitle = "Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)",
month = nov,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlpcss-1.2",
doi = "10.18653/v1/2022.nlpcss-1.2",
pages = "14--24",
abstract = "Monitoring the development of labor market skill requirements is an information need that is more and more approached by applying text mining methods to job advertisement data. We present an approach for fine-grained extraction and classification of skill requirements from German-speaking job advertisements. We adapt pre-trained transformer-based language models to the domain and task of computing meaningful representations of sentences or spans. By using context from job advertisements and the large ESCO domain ontology we improve our similarity-based unsupervised multi-label classification results. Our best model achieves a mean average precision of 0.969 on the skill class level.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gnehm-etal-2022-fine">
<titleInfo>
<title>Fine-Grained Extraction and Classification of Skill Requirements in German-Speaking Job Ads</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ann-sophie</namePart>
<namePart type="family">Gnehm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Bühlmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Buchs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Clematide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katherine</namePart>
<namePart type="family">Keith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Monitoring the development of labor market skill requirements is an information need that is more and more approached by applying text mining methods to job advertisement data. We present an approach for fine-grained extraction and classification of skill requirements from German-speaking job advertisements. We adapt pre-trained transformer-based language models to the domain and task of computing meaningful representations of sentences or spans. By using context from job advertisements and the large ESCO domain ontology we improve our similarity-based unsupervised multi-label classification results. Our best model achieves a mean average precision of 0.969 on the skill class level.</abstract>
<identifier type="citekey">gnehm-etal-2022-fine</identifier>
<identifier type="doi">10.18653/v1/2022.nlpcss-1.2</identifier>
<location>
<url>https://aclanthology.org/2022.nlpcss-1.2</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>14</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-Grained Extraction and Classification of Skill Requirements in German-Speaking Job Ads
%A Gnehm, Ann-sophie
%A Bühlmann, Eva
%A Buchs, Helen
%A Clematide, Simon
%Y Bamman, David
%Y Hovy, Dirk
%Y Jurgens, David
%Y Keith, Katherine
%Y O’Connor, Brendan
%Y Volkova, Svitlana
%S Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F gnehm-etal-2022-fine
%X Monitoring the development of labor market skill requirements is an information need that is more and more approached by applying text mining methods to job advertisement data. We present an approach for fine-grained extraction and classification of skill requirements from German-speaking job advertisements. We adapt pre-trained transformer-based language models to the domain and task of computing meaningful representations of sentences or spans. By using context from job advertisements and the large ESCO domain ontology we improve our similarity-based unsupervised multi-label classification results. Our best model achieves a mean average precision of 0.969 on the skill class level.
%R 10.18653/v1/2022.nlpcss-1.2
%U https://aclanthology.org/2022.nlpcss-1.2
%U https://doi.org/10.18653/v1/2022.nlpcss-1.2
%P 14-24
Markdown (Informal)
[Fine-Grained Extraction and Classification of Skill Requirements in German-Speaking Job Ads](https://aclanthology.org/2022.nlpcss-1.2) (Gnehm et al., NLP+CSS 2022)
ACL