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Abstract
Monitoring the development of labor market
skill requirements is an information need that
is more and more approached by applying text
mining methods to job advertisement data. We
present an approach for fine-grained extrac-
tion and classification of skill requirements
from German-speaking job advertisements. We
adapt pre-trained transformer-based language
models to the domain and task of comput-
ing meaningful representations of sentences
or spans. By using context from job adver-
tisements and the large ESCO domain ontol-
ogy we improve our similarity-based unsuper-
vised multi-label classification results. Our best
model achieves a mean average precision of
0.969 on the skill class level.

1 Introduction

How skill demand evolves over time in the labor
market has always been a main research question
in social sciences. Research has however been
hampered by the following limitations: Skills were
mostly measured on the supply side (what workers
bring, not what employers ask for) and only on
an aggregated level (by occupations) and/or cross-
sectional (one data point in time). Furthermore,
most data focused on a selection of skills, since
defining and measuring skills is difficult (Biagi and
Sebastian, 2020). Job advertisement data can help
to overcome such shortcomings by providing time-
series measurements on the job level, including all
labor market skill requirements (Buchmann et al.,
2022a). Not surprisingly, social science has thus
lately shown great interest in applying text min-
ing methods to job advertisements (job ads in the
following).

Our main goals are to, first, extract spans of
text in Swiss German-speaking job ads that specify
workers’ skill requirements: Specifically, educa-
tional requirements, work experiences or skills, and
language competences. Second, we classify the ex-
tracted spans onto the large, fine-grained European

Skills, Competences, Qualifications and Occupa-
tions Ontology (ESCO).1 Third, we show the value
of the data-driven extraction results in evaluations
and initial social science analyses.

Our general idea is to use, in an unsupervised ap-
proach, the semantic similarity between ontological
concepts and text spans in job ads for fine-grained
classification of job ad skills to the ESCO skill
ontology. We rely on state-of-the-art pre-trained
transformer-based language models (foundational
models) and experiment with adaptations to the
job ad domain and to the task of computing the
semantic similarity on sentence or span level. Ad-
ditionally, we assess different methods to exploit
the textual content and terminological richness of
the ESCO ontology for fine-tuning the foundational
language models. And, we show how providing ad-
ditional textual context from the job ads and/or the
ontology improves the similarity scores between
skill requirement spans in job ads and their corre-
sponding concepts from the ontology.

Our contributions include a definition of skill
requirement mention types and annotation guide-
lines for fine-grained extraction, and an exploration
of NLP methods for improving semantic similar-
ity measures for matching job ad text snippets
with ESCO terminology. We contribute further
sentence-level language representation models that
are adapted to the job ad domain and skill-related
expressions, and we incorporate terminological
variability from a large ontology into the model.

Section 2 discusses related work. Section 3 de-
scribes our data. Our approaches, experiments, and
results for extracting skills are explained in Section
4, and for classification in Section 5. Section 6
shows initial sociological analyses on the extracted
data. Section 7 summarizes our main findings and
directions for future work.

1See https://esco.ec.europa.eu/en/about-esco/what-esco,
(European Commission. Directorate General for Employment,
Social Affairs and Inclusion., 2017)
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2 Related Work

2.1 Skill Extraction from Job Ads

For the US and UK job market, recent studies inves-
tigate changing skill requirements in jobs ads (Dem-
ing and Kahn, 2018; Hershbein and Kahn, 2018;
Azar et al., 2018), with newer research pointing
out the importance of new skills entering jobs and
altering required skill combinations within profes-
sions (Acemoglu et al., 2022; Atalay et al., 2020).
However, these approaches use mostly proprietary
data, where extraction is not fully documented. Re-
cently, Zhang et al. (2022b) worked on fine-grained
skill classification using their English and Danish
Kompetencer dataset. They use the ESCO API
to retrieve 100 candidates per manually annotated
skill span and select the best candidate for their
silver standard annotation by minimal Levenshtein
distance. Fine-tuning a multilingual BERT-style
model on their small in-domain and in-language
training material resulted in big improvements com-
pared to their few-shot setup.

2.2 NLP Methods for Improving Semantic
Similarity Measures

Continued in-domain pre-training: Masked lan-
guage modeling (MLM) on domain or task-specific
data is often and successfully applied for adapting
general-domain language models to specific do-
mains or even tasks (see Gururangan et al. (2020)
for an overview, or Gnehm et al. (2022) and Zhang
et al. (2022a) for applications on job ads.)

Sentence-level fine-tuning: Reimers and
Gurevych (2019) were the first to adapt pre-trained
transformer-based language models with super-
vised training on natural language inference (NLI)
and semantic textual similarity (STS) datasets. Re-
sulting Sentence-BERT (SBERT) models can be
used to efficiently compare semantic similarities on
the sentence level. Many subsequent approaches
leverage more self-supervised training to lower
data requirements, often by using unlabeled data
and by synthetically creating pairs of similar sen-
tences from a single source sentence (Giorgi et al.,
2021; Gao et al., 2021; Wang et al., 2021). Differ-
ences between the approaches in architectures and
training objectives are discussed in Section 5.2.

3 Experimental Data

3.1 Job Ad Data
We use the Swiss Job Market Monitor (SJMM)
dataset consisting of representative yearly samples
of print and online job ads from Switzerland from
1950 up to now.2 Being representative and longitu-
dinal, the data is ideal for research on the evolution
of skill requirements. In our experiments, we fo-
cus on German-speaking job ads from 1990-2021
(n=53k).

3.2 Ontological and Terminological Data
ESCO: We use the German data of the multilin-
gual ESCO ontology (v1.1.0), comprising 14.5k
skill concepts. Each concept is represented by a
preferred term (e.g., use spreadsheets software),
often complemented by alternative terms (syn-
onyms as use spreadsheets programs) or hidden
terms (outdated terms or specific products, Mi-
crosoft Office Excel).

In total, the 14.5k ESCO concepts are expressed
by 20k terms, and include knowledge (e.g., phar-
macotherapy), skills in a narrower sense (an ability
as apply change management), language skills (un-
derstand spoken French), and transversal skills,
also referred to as core or soft skills (negotiate
compromises). These four fields are hierarchically
structured into 638 classes (max. depth of 3 with
475 classes on the lowest level). The concepts
are internally ordered by broader/narrower relation-
ships and are linked to these classes directly or via
broader concepts. ESCO is multi-hierarchical and
a concept may have several broader concepts (e.g.,
aviation meteorology belongs to the broader con-
cepts meteorology and transport services). Overall,
29.3% of concepts (30.5% of terms) fall into more
than one class.

Swiss databases:3 We dispose of Swiss termi-
nology on professions and qualifications that has
been linked to ESCO knowledge classes (e.g., the
term architect belongs to the ESCO class archi-
tecture and town planning). This adds 39k terms
(20.5k concepts) to 102 knowledge classes and
should help identify Swiss educational require-
ments. Here the class ambiguity is much lower,
only 0.1% of concepts (0.4% of terms) belong to
more than one class.

Custom terminology additions: We add a hand-
ful of terms to cover a few Swiss-specific high-

2See https://www.swissubase.ch (Buchmann et al., 2022b)
3Swiss Federal Statistical Office, data available on request

15

https://www.swissubase.ch


Figure 1: Example extraction of EDU, EXP, LNG spans
(examples translated from German to English)

Precision Recall F-score
EXP 0.856 0.831 0.843
EDU 0.861 0.859 0.861
LNG 0.885 0.914 0.899

Table 1: Skill extraction results per skill span type on
final test set (n=200 ads)

frequency abbreviations, which are not represented
as such in the ontology, e.g., ‘KV’ for ‘kaufmän-
nische/r Angestellte/r’ (commercial clerk).

4 Skill Extraction

4.1 Coarse Skill Span Extraction

We first trained a model to extract text spans from
the ads that contain skill requirements. Three span
types were defined for this coarser task: education
(EDU), experiences (EXP), and language skills
(LNG). EDU spans include requirements for both
formal and informal education and further training.
EXP spans contain all required experiences and
knowledge, which are not specified in terms of spe-
cific education. LNG spans describe requirements
for the language skills of the applicants. Figure 1
shows an annotated example.

We annotated 2,000 ads iteratively with the an-
notation tool prodigy4. To start, a domain expert
annotated a sample of around 100 ads to refine the
annotation guidelines and train an initial model.
Then, we built the rest of the training data in 7 it-
erations, where the same annotator corrected each
time roughly 250 ads pre-annotated by the model.
We retrained the model after every iteration using
80% of available data as training, 10% as develop-

4https://prodi.gy

Figure 2: Examples for fine-grained extraction of
QUALIFIER, CONTAINER, and SKILL areas in EDU
and EXP spans (examples translated from German to
English)

Precision Recall F-score
EXP
QUALIFIER 0.953 0.968 0.960
SKILL 0.910 0.915 0.913
CONTAINER 0.940 0.973 0.956
EDU
QUALIFIER 0.947 0.989 0.968
SKILL 0.940 0.951 0.945
CONTAINER 0.922 0.936 0.929
SkillContainer 0.874 0.908 0.891

Table 2: Fine-grained skill area extraction results on
final test set (n=200 ads)

ment, and 10% as test set.
We treated the extraction and classification

of skill spans as a named-entity-recognition-
like problem and trained a transition-based NER
model (Lample et al., 2016) using spaCy5. We
used jobBERT-de6, a German transformer model
adapted to the domain of job ads (Gnehm et al.,
2022), to compute contextualized input representa-
tions for the downstream NER component.

4.2 Fine-Grained Skill Area Extraction

Within the extracted EDU and EXP spans, different
content aspects are present, as shown in Figure 1
and 2. In addition to information about the spe-
cific skill area, they also specify the qualitative
level of a skill, or mention also generic skill re-

5https://spacy.io. We used the default settings of the
components spacy-transformers.TransformerModel.v1 and
spacy.TransitionBasedParser.v2

6https://huggingface.co/agne/jobBERT-de
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quirement containers. To better capture the core
content of the skills, a more fine-grained skill area
extraction model has been trained for both the EXP
and the EDU spans. The training data was created
the same way as for coarse-grained extraction (see
Section 4.1). Formally, these models split the spans
into different areas: QUALIFIER, SKILL, CON-
TAINER, and SkillContainer. The last category
was introduced only in the EDU domain to capture
compounds that contain both skill area and con-
tainer information. In German, such compounds
occur frequently, e.g., ‘Handelsdiplom’ (commer-
cial diploma), ‘Bürolehre’ (office apprenticeship).
Figure 2 shows how the EDU and EXP spans from
Figure 1 are refined accordingly.

4.3 Results

Table 1 shows the results for the skill span extrac-
tion on the final test set (n=200 ads). For LNG,
it performs best with an F-score of 0.899, while
EXP performs least well with 0.843. This reflects
the higher complexity of the EXP span task. Ta-
ble 2 reports the performance of the fine-grained
skill area extraction. In general, all categories per-
form very well, with F-scores above 0.9. Only the
SkillContainer category scores slightly worse with
0.891.

5 Fine-Grained Unsupervised
Multi-Label Classification of Skill
Requirements

5.1 Task Definition

In order to map a skill mention of a job ad to one or
more fitting ESCO concepts, we perform a seman-
tic similarity lookup, comparable to an information
retrieval setting, where, for a given query (job ad
skill), we search for the most relevant items (on-
tology skill concepts). The problem can thus be
understood as an unsupervised, fine-grained multi-
label classification task.

Contextualizing job ad terms: As introduced
in Section 4, we use skill areas for our query. How-
ever, isolated skill areas without surrounding job ad
text can be too generic or ambiguous, potentially
leading to unsuitable matches. To mitigate this is-
sue, we contextualize each skill area with available
surrounding skill areas of the same span.7 After
embedding these contextualized text spans with an

7In total, we have 131k areas from 78k EXP spans, and
81k areas from 74k EDU spans available. The 39k LNG spans
were not further split up.

SBERT model, we calculate a vector representation
for each skill area by averaging the vector repre-
sentation of each token. Contextualization helps
us find more exact skill concepts, e.g., if we query
project management, we receive project manage-
ment as top suggestion, but if we query project
management with its context IPMA, PMI, HER-
MES, we find the more specific concept IT project
management methods. It helps further dealing with
incomplete skill areas, as they occur for instance in
elliptic enumerations: Querying Motor vehicle in
its context Motor vehicle, liability, property insur-
ance returns insurance types as top suggestion.8

Contextualizing ontology terms: In the lookup,
we use all available ontology terms (see Section
3.2). As preprocessing, we remove information
on educational levels in the Swiss data, such that
– as for the job ads – only a skill area remains
(e.g. florist (Federal Professional Certificate) is
transformed to florist). Ontology terms can also
be ambiguous by themselves, and many belong to
more than one skill class (see Section 3.2). There-
fore, we contextualize ontology terms too, and use
the hierarchical ontology structure by inserting its
class label for each term as context. For embedding
with SBERT models, we represent these term and
class combinations in the form ‘<term> (<class la-
bel>)’.9 For each term, a vector representation is
calculated in the same way as described above for
the job ad terms. To give an example, with contex-
tualized ontology terms, querying the job ad skill
SAP developer ABAP, we find that SAP ABAP in
the class Software and applications development
is more similar than SAP ABAP in the class Using
digital tools for collaboration and productivity.

5.2 Semantic Skill Representation
Approaches

The quality of the results of the vector similarity
search depends crucially on a suitable vector space
representation of the skill descriptions from the job
ads and from the ontology. Therefore, we experi-
ment with several state-of-the-art approaches for
improving the vector similarity of general BERT
language representation models by applying con-
tinued pretraining and fine-tuning techniques.

MLM on job ad texts: Masked language mod-

8ESCO queried with the model sts-gbert.
9After initial experiments, 173 knowledge class labels were

replaced by custom labels using a language less formulaic
and more common for job ads, e.g., services in the field of
transportation was replaced by transportation services.
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eling (Devlin et al., 2019) on in-domain texts has
been successfully used for adaptation of general-
domain BERT models to special domain language
use (Gururangan et al., 2020). We assess the benefit
of continued in-domain language model pretrain-
ing by comparing GBERT-base10, a small version
of the German state-of-the-art model (Chan et al.,
2020), with a version of the same model that is
adapted to the domain of German-speaking job ads,
and was trained on a job ad dataset including the
data used here, jobGBERT11 (Gnehm et al., 2022).

TSDAE on skill spans: In the transformer-
based sequential denoising auto-encoder (TSDAE)
approach (Wang et al., 2021), meaningful sentence
embeddings are learned by denoising corrupted
input. An encoder produces a fixed-size vector
representation for an input sentence with deleted
words, from which a decoder learns to reconstruct
the uncorrupted sentence. By giving the decoder
only the fixed-size sentence representation and no
word embeddings as input, a bottleneck is intro-
duced that forces the encoder to provide a good
semantic sentence representation. We use TSDAE
to learn embeddings for our domain-specific skill
terminology. As training data, we use all skill spans
from our job ad data (216k), and skill terms and
descriptions (split into sentences) from our ontol-
ogy data (107k). Since our spans are shorter than
the sentences used in the original approach (2.2
vs. 10.6 tokens on average), we experimented with
smaller deletion rates and found a rate of 0.4 best
performing. All other parameters are set as in Wang
et al. (2021).

STS on general-domain data: Reimers and
Gurevych (2019) use Siamese BERT Networks for
training sentence embeddings on sentence pairs
which are labeled with a cosine similarity score
indicating their semantic similarity. Sentence vec-
tor representations are calculated by mean pooling
over token embeddings. Then, by computing the
similarity of the two sentence vectors and by com-
paring it against the gold similarity score, better
semantic sentence representations are learned. No
such labeled data is available for our domain, but
we assess the benefits of fine-tuning our sentence
embeddings on general-domain data for German by
using the translated STSBenchmark dataset (May,
2021) (5k sentence pairs). We train with hyperpa-
rameters set as in Reimers and Gurevych (2019).

10https://huggingface.co/deepset/gbert-base
11https://huggingface.co/agne/jobGBERT

EXP skill: attracting new customers, acquisition
skill concept suggestions A B
recruitment methods (marketing and advertisement) 0.5 0.5
customer insight (marketing and advertisement) 0.5 0
find new clients (entrepreneurial skills) 1 1
recruitment and hiring (personnel recruitment) 0 0

EDU skill: bio lab technician
skill concept suggestions A B
biologist (biology) 0.5 0.5
biology technician (biology) 1 0.5
biology lab technician (chemical technology) 1 1
biology teaching assistant (specialist subject teachers) 0 0

LNG skill: English (very good in spoken and written)
skill concept suggestions A B
teach English as a foreign language (teaching) 0 0
understand written English (languages) 1 1
English speaking skills (languages) 1 1
English teacher (specialist subject teachers) 0 0

Table 3: Evaluation examples of skill concept sugges-
tions (class labels in brackets) for an EDU, an EXP, and
an LNG job ad skill (in bold italics, context in italics)
by two annotators A and B (examples translated from
German to English).

MNR on ontology data: Sentence embeddings
are learned by training Siamese networks with
multiple negative ranking (MNR) loss (Henderson
et al., 2017). This is a supervised approach, but
training data requirements are low since only pairs
of similar sentences are needed. Dissimilar sen-
tence pairs are created by using other examples
from the same batch of training sentences. The
relative distances between sentence pairs are then
learned using a ranking loss function. We leverage
our ontology data by creating positive text pairs in
which we combine alternative or hidden terms, as
well as the phrases describing them, each with their
preferred label. In this way, we seek to incorporate
knowledge of terminological variations within the
ontology into sentence embeddings. We expect this
approach to be the most beneficial since it is using
data specific to our domain and task in a supervised
fashion.

5.3 Experiments and Evaluation
Evaluation data: To be able to evaluate models
on our fine-grained unsupervised multi-label clas-
sification task, we created a small amount of gold
standard data. We selected a random sample of 25
job ad skill terms and in addition compiled a chal-
lenge sample of 15 terms covering some difficult
cases (e.g., formulations that are specific to Switzer-
land). For these 40 terms, we did a contextualized
ontology lookup as described in Section 5.1 using
all our different SBERT models (see below), and
evaluated the ten first suggestions of all models.
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Annotators assigned scores of 0 for inadequate, 0.5
for acceptable, and 1 for highly appropriate sugges-
tions. We evaluated the suggestions on the class
level and for the random sample also on the con-
cept level. Table 3 shows examples for evaluation
on concept level. A total of 494 class suggestions
were rated by 3 annotators each and 685 concept
suggestions were rated by 2 annotators each. For
the random sample, Krippendorff’s alpha on the
class level is 0.83, on concept level 0.814, and for
the challenge set on class level 0.73. This indicates
good agreement for the random and satisfactory
agreement for the challenge sample (Krippendorff,
2004).

Experiments: We evaluate combinations of the
presented SBERT training approaches with some
restrictions: MLM on domain data only makes
sense as the first step, since it affects the foun-
dational model on the token level. STS after TS-
DAE is more effective than vice versa, according to
Wang et al. (2021), and domain-oriented (MNR) is
applied after general-domain (STS) fine-tuning.12

This leads to a total of 14 tested model configura-
tions: Starting from a general (gbert) or domain-
adapted (jobgbert) LM, we optionally train with
TSDAE (model name prefix: tsdae-), followed by
optional STS (prefix: sts-), followed by optional
MNR (prefix: mnr-). A model with only STS train-
ing on a general-domain LM (sts-gbert in the fol-
lowing) corresponds to a vanilla or baseline SBERT
model. For selected models, we further perform
an ablation study to estimate the effects of contex-
tualizing job ad skills and/or ontology skills for
similarity queries.

We use the created gold standard data to eval-
uate fine-grained unsupervised skill classification
with mean average precision over the first ten con-
cept or class suggestions (mAP@10), see Equa-
tion 1, where Q are the queries, (25 in our case
for the random sample), m is the number of ac-
cepted suggestions, and k is the cutoff rank (10
in our case).13 Mean average precision considers
the ranking capabilities of models (are more ap-
propriate suggestions presented first?) and does
not unfairly penalize models when too few suit-
able items are available (less than ten items for

12In MNR we used batch-size of 32 after pre-tests with
batch sizes 16, 32, 64. If not specified differently in Sec-
tion 5.2, all other parameters are set as in the original ap-
proaches.

13We considered a suggestion as true positive if at least one
annotator gave a score of 1, or at least two annotators a score
of 0.5.

mAP@10) (Manning et al., 2008).

MAP (Q) =
1

|Q|

|Q|∑

j=1

1

mj

mj∑

k=1

Precision(Rjk)

(1)
A conventional recall evaluation (are all relevant
ontology concepts among the suggestions?) is not
applicable in this scenario with 638 classes and 35k
concepts. However, we examine mentions with
very low similarities to ontology concepts.

5.4 Results and Discussion

Fine-grained skill classification performance:
In classification from job ads to ESCO, the best

model on class level is mnr-sts-jobgbert with 0.969
mAP@10, on concept level mnr-sts-tsdae-jobgbert
with 0.908 mAP@10 (see Table 4). As expected,
evaluation scores are lower on concept than on class
level, since it is much harder to find an appropriate
concept out of 35k possibilities than an appropriate
class out of 638. Performance differences between
models are often small, but it is noticeable that the
best models at both levels include MNR as pre-
training. MNR seems thus to have a strong positive
impact on performance, while the effect of other
pre-training steps is less obvious, and including
additional pre-training does not ensure higher per-
formance compared to vanilla sts-gbert.

On the challenge test set (not shown in Table
4), all models experience a performance drop com-
pared to the random sample, but to varying degrees.
For instance, the sts-gbert model with general-
domain pre-training only achieves mAP@10 of
0.763. Compared to the random sample this is a
loss of 15.1 percentage points (pp in the following).
Our best models mnr-sts-tsdae-jobgbert and mnr-
sts-jobgbert reach both mAP@10 of 0.9, which
means a smaller performance drop of 6.2 and 6.9pp
respectively. Hence, extensive SBERT fine-tuning
also pays off for classifying more difficult cases.

The mapping of EDU and LNG terms is, in gen-
eral, easier than the mapping of EXP terms, with
models reaching on average mAP@10 of 0.952
and 0.938 versus 0.878 (on class-level, see Table
4). Interestingly, model performance can vary con-
siderably across different skill types, suggesting
that fine-tuning approaches may have type-specific
effects (see discussion below).

Impact of different SBERT fine-tuning steps:
To assess different sentence embedding fine-tuning
steps, we estimate their effects on mean average
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Class Level
Model ALL R EDU R EXP R LNG R
mnr-sts-jobgbert 0.969 1 0.977 5 0.945 1 1.000 1
mnr-sts-tsdae-jobgbert 0.961 2 0.977 5 0.944 2 0.963 9
mnr-gbert 0.958 3 0.987 2 0.929 3 0.957 10
mnr-tsdae-jobgbert 0.957 4 0.983 3 0.924 4 0.968 8
mnr-sts-tsdae-gbert 0.954 5 0.983 3 0.902 6 0.998 2
mnr-jobgbert 0.941 6 0.940 11 0.923 5 0.976 6
mnr-tsdae-gbert 0.940 7 0.967 8 0.890 9 0.988 5
sts-tsdae-gbert 0.935 8 0.996 1 0.856 10 0.970 7
sts-jobgbert 0.914 9 0.926 12 0.899 7 0.919 11
mnr-sts-gbert 0.903 10 0.865 14 0.893 8 0.998 2
tsdae-gbert 0.879 11 0.968 7 0.786 14 0.887 13
sts-gbert (baseline) 0.876 12 0.870 13 0.826 11 0.990 4
sts-tsdae-jobgbert 0.872 13 0.947 10 0.787 13 0.890 12
tsdae-jobgbert 0.821 14 0.948 9 0.790 12 0.631 14
mean 0.920 0.952 0.878 0.938
stdev 0.044 0.041 0.059 0.096

Concept Level
Model ALL R EDU R EXP R LNG R
mnr-sts-tsdae-jobgbert 0.908 1 0.923 5 0.865 1 0.963 8
mnr-gbert 0.897 2 0.950 1 0.825 3 0.934 10
mnr-tsdae-jobgbert 0.889 3 0.947 2 0.791 6 0.968 7
mnr-sts-jobgbert 0.886 4 0.874 10 0.842 2 1.000 1
sts-tsdae-gbert 0.868 5 0.928 4 0.758 8 0.970 6
sts-gbert (baseline) 0.867 6 0.878 8 0.795 5 0.990 4
mnr-sts-gbert 0.866 7 0.864 13 0.803 4 0.998 2
mnr-sts-tsdae-gbert 0.866 7 0.929 3 0.737 9 0.998 2
mnr-jobgbert 0.854 9 0.872 12 0.790 7 0.943 9
mnr-tsdae-gbert 0.838 10 0.904 7 0.698 11 0.987 5
sts-jobgbert 0.819 11 0.877 9 0.710 10 0.919 11
tsdae-gbert 0.777 12 0.916 6 0.570 12 0.912 12
sts-tsdae-jobgbert 0.716 13 0.857 14 0.543 13 0.780 13
tsdae-jobgbert 0.676 14 0.874 10 0.516 14 0.600 14
mean 0.838 0.900 0.732 0.926
stdev 0.069 0.032 0.113 0.110

Table 4: Mean Average Precision (mAP@10) of the
models on the random sample, evaluated on class (up-
per part) and concept level (lower part). Model names
end with general (gbert) or domain-specific (jobgbert)
LM used as starting point, each subsequent training
step is prepended on the left (last step leftmost). The
columns labeled ‘R(ank)’ denote the systems’ ranking.
The systems are ordered by the overall (ALL) classifica-
tion performance.

precision in a linear model (see Table 5). Over all
terms, MNR raises the mAP@10 score by 7.9pp,
and STS by 2.4pp, while the effects of MLM and
TSDAE are small and negative.

Examining different skill types, we see that
MNR is especially helpful for EXP (10.8pp) and
LNG (11.5pp), much less for EDU (3.2pp). For
EDU terms, the terminology is comprehensive
thanks to Swiss data on educational terms, and
these terms also have little class ambiguity (see
Section 3.2). Thus, the smaller effect of MNR in
classifying EDU terms can be explained by the
fact that less needs to be learned about the ontol-
ogy or the term variations. STS’s strong effect on
LNG (8.5pp) may reflect that this task is closer to
general knowledge (e.g., mother tongue is similar
to language proficiency), whereas EDU and EXP
mapping requires domain knowledge, and barely
profits from general-domain training material. TS-

ALL EDU EXP LNG
constant 0.856 0.904 0.801 0.869
MLM -0.004 0.008 0.011 -0.058
TSDAE -0.002 0.040 -0.030 -0.033
STS 0.024 -0.013 0.030 0.085
MNR 0.079 0.032 0.108 0.115
R2 0.616 0.348 0.733 0.643

Table 5: Linear model B-coefficients of SBERT fine-
tuning steps on mAP@10 scores (class level)

Model Context ALL EDU EXP LNG

mnr-sts-
tsdae-
jobgbert

all 0.908 0.923 0.865 0.963
job ad 0.903 0.920 0.850 0.976
ontology 0.890 0.937 0.805 0.963
none 0.872 0.944 0.747 0.976

sts-gbert

all 0.867 0.878 0.795 0.990
job ad 0.730 0.730 0.712 0.763
ontology 0.852 0.901 0.735 0.990
none 0.759 0.815 0.700 0.763

Table 6: mAP@10 for 2 selected models with different
query contextualization (evaluated at concept level)

DAE is only effective for EDU classification. Ed-
ucational degrees represented in the ontology are
often mentioned verbatim in job ads. We assume
it is the small gap between ontology and job ad
language which makes this simple fine-tuning so
helpful. MLM effects are minor, but EXP clas-
sification, the most difficult task, benefits (1.1pp)
from pre-training on job ad texts. In sum, MNR
is the most beneficial method, but for certain term
types, performance gains are observed with all ap-
proaches.

Effect of contextualization: We assess the ben-
efits of query contextualization in ablation exper-
iments where we omit the job ad skill span con-
text, the ontology context, or both.14 We compare
our best model on concept level, mnr-sts-tsdae-
jobgbert with sts-gbert, which has only undergone
general-domain fine-tuning. Table 6 shows perfor-
mance drops for both, but sts-gbert is much more af-
fected than mnr-sts-tsdae-jobgbert (-10.8 vs -3.6pp
when omitting all context). The example in Ta-
ble 7 shows how mnr-sts-tsdae-jobgbert suggests
appropriate skill concepts independent of contex-
tualization, whereas sts-gbert fails without context.
Examination of different term types shows that
mnr-sts-tsdae-jobgbert benefits from query contex-
tualization only for EXP mapping – the most diffi-

14For this ablation experiment, additional 89 skill concept
suggestions were evaluated by one annotator.
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Model Context Skill Concept Similarity
mnr-sts-tsdae-
jobgbert

all Banking and Finance 0.722
none Bankier (banker) 0.732

sts-gbert
all Banking Consultant 0.809
none Bankknecht (butcher’s assistant) 0.782

Table 7: Most similar skill concept suggestion for the
job ad expression Bank with and without its context
Financial Consulting, Management

cult task –, whereas for LNG and EDU, the model
seems to have incorporated enough domain knowl-
edge during fine-tuning. As for which context is
more helpful, omitting ontology context is much
more detrimental to sts-gbert (-13.7pp) than omit-
ting job ad context (-1.5pp), whereas for mnr-sts-
tsdae-jobgbert, dropping job ad context is worse
(-1.8 vs -0.5pp). Again, this indicates that suitable
fine-tuning can effectively incorporate ontology
knowledge into the model.

Low-similarity cases: We examine the 5% of
EDU and EXP skills that each have the lowest
similarities to ESCO concepts using mnr-sts-tsdae-
jobgbert.15 For EDU, these cases consist mainly of
terms that are not skill areas at all, but containers
e.g., ‘Diplomabschluss’ (diploma), rare abbrevi-
ations (CFA (Chartered Financial Analyst)), and
generic terms like ‘technisch’ (technical).16 For
EXP, we also find mainly generic terms (implemen-
tation) as well as skills not covered by the ontology
(e.g., knowing a place or working abroad). In a
random sample of 20 low-similarity cases each for
EDU and EXP, we find that for both types, 4 out
of 20 skill span extractions were flawed. In the re-
maining cases, the precision of the first suggestion
at the class level is very low, 0.594 for EDU and
0.313 for EXP. Finally, inspecting the 20 cases with
the lowest similarities, none of the EDU terms and
only 7 out of 20 EXP terms qualify as proper skill
areas. It is in favor of our model that we find low
similarities between ESCO concepts and flawed
extractions or job ad skills not represented in the
ontology. For practical application, the results sug-
gest applying a minimum similarity threshold, and
we use 0.5 as the default threshold.

Term selection: mAP@10 as a measure con-
siders that the ontology may not comprise 10 ac-
ceptable suggestions for every skill area. However,
for the application, a suitable cut-off value must
be found for each case, since the number of ac-

15Mean similarity of the first suggestion is 0.446 for EXP
and 0.473 for EDU.

16The German word ‘technisch’ (technical) appears in 377
ontology terms or descriptions, from 183 different classes.

ceptable ontology terms indeed varies greatly.17 In
a gradient-based approach, we aim to select term
suggestions until a drop in similarities is observed,
i.e., we cut off where the gradient of the probability
distribution is minimal. This way, we consider on
average three ontology terms for each skill term.
In comparison to considering only the most similar
term, we lose on average 3.6pp of the evaluation
score on the concept level, which we regard as a
reasonable trade-off for application.

6 Downstream Sociological Analysis

Labor market changes: It is commonly believed
that digital technologies have changed the demand
for skills to perform tasks in the labor market in
the past decades. Recent literature points to the
importance of new skills entering jobs and altering
the required skill combinations (Acemoglu et al.,
2022). It also emphasizes that most of the changes
in skill demand take place within and not across
occupations (Bisello et al., 2019; Freeman et al.,
2020). According analyses require time series data
on skill demand at the job level that includes valid
measures of all skills required in the labor market.
Such data has been, however, extremely scarce.

Illustrative analyses: To illustrate the useful-
ness of our job ads data for social sciences, we
present some selected analyses. First, we calcu-
late correlations between occupation-skill matrices
that ESCO provides and those resulting from the
SJMM data. At the 1-digit level of the international
standard classification of occupations (ISCO-08)18,
for example, the correlation is as high as 0.87, un-
derscoring the validity of our skill extractions. Sec-
ond, we illustrate within-occupation change in skill
demand with an example: the evolution of skill
requirements in the occupational field of techni-
cians and engineers. To aggregate fine-grained,
multi-hierarchical ESCO skill classes, we used a
clustering approach.19 The resulting 48 clusters are
then applied to the SJMM job level data, generating
for each job ad indicators of how strongly the text
represents each skill cluster. To keep the picture
detailed as well as simple, only three interesting
clusters for this occupation are shown in Figure 3.

Figure 3 confirms – for our example – that

17For instance, five concepts were accepted for acquiring
new customers, but only one for fire department.

18https://isco-ilo.netlify.app/en/isco-08/
19We applied HDBSCAN (Campello et al., 2013) (min.

size=3, epsilon=0.0 and alpha=1.0) over skill class vectors
(averaged skill term vectors per class).
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Figure 3: Illustration of within-occupation evolution of
skill requirements

the type of required skills changed within occu-
pations over time. Skills for making patterns, tem-
plates and models were highly required shortly
after the turn of the century. Across the follow-
ing 15 years, the demand for these mainly manual
and non-digital skills declined. In contrast, the de-
mand for CAD and designing electronic systems
was nearly nonexistent and then increased sharply.
These skills are related to digital technologies and
newly entered the occupation. After their entry,
also other elements of the required skill combina-
tion seem to change, e.g., demand for teamwork
skills is increasing (see Figure 3). This is in line
with the literature, which suggests that digital tech-
nologies lead to more flexible, team-based settings
(Autor et al., 2002).

7 Conclusion

Our two-step approach of first extracting text spans
expressing language skills, experience, and edu-
cational requirements, followed by further subdi-
viding these into skill areas, containers, and quali-
fiers, allowed us to achieve broad coverage of fine-
grained competency classifications. By grouping
skill areas from the same span for transformer-
based vector representation, we provide relevant
context that helps find appropriate ESCO ontology
concepts for each job ad skill area.

For fine-grained classification, our domain and
task-specific SBERT learning steps boost perfor-
mance – best models reaching mAP@10 of 0.969

on class and 0.908 on concept level – and also help
deal with more difficult cases encountered in the
challenge sample. While infusing terminological
variation from the ontology into the model with
MNR is by far the most effective, all different pre-
training and fine-tuning steps are beneficial to some
extent.

Analyses on low-similarity cases and our
gradient-based selection approach showed that sim-
ilarity values of our best models can be used to se-
lect the most relevant ontology concepts and avoid
mismatches.

In future work, models could be further fine-
tuned with curated task-specific training material
(similar to our evaluation data) to improve clas-
sification for the most difficult task, experience
classification (EXP). The next steps in social sci-
ence analyses could be to assess how required skill
combinations evolve within occupations, which
occupations shift towards more specialized or di-
versified requirements, or to which extent the skill
requirements of some occupations become more
alike.

Limitations

Job ad texts are influenced by conventions, social
norms, and the effects of their publication media.
This potentially affects the performance of our ap-
proach in different social settings, e.g., for German-
language job ads from other countries.

Furthermore, the average number of skill require-
ments per ad grows over time. The extent to which
this is due to changes in labor market structure,
social norms, recruiting practices, or publication
media remains to be investigated.

Our SBERT fine-tuning aimed at enabling valid
skill classification for job ads from the last three
decades. Therefore, the application to future job
ads might require periodic updates of models with
newer data. And, while our experiments on the
classification task show expected and explainable
results, analyses could still benefit from a larger
test set.
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