@inproceedings{sleem-etal-2022-stars,
title = "Stars at Qur{'}an {QA} 2022: Building Automatic Extractive Question Answering Systems for the Holy Qur{'}an with Transformer Models and Releasing a New Dataset",
author = "Sleem, Ahmed and
Elrefai, Eman Mohammed lotfy and
Matar, Marwa Mohammed and
Nawaz, Haq",
editor = "Al-Khalifa, Hend and
Elsayed, Tamer and
Mubarak, Hamdy and
Al-Thubaity, Abdulmohsen and
Magdy, Walid and
Darwish, Kareem",
booktitle = "Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur'an QA and Fine-Grained Hate Speech Detection",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.osact-1.18",
pages = "146--153",
abstract = "The Holy Qur{'}an is the most sacred book for more than 1.9 billion Muslims worldwide, and it provides a guide for their behaviours and daily interactions. Its miraculous eloquence and the divine essence of its verses (Khorami, 2014)(Elhindi,2017) make it far more difficult for non-scholars to answer their questions from the Qur{'}an. Here comes the significant role of technology in assisting all Muslims in answering their Qur{'}anic questions with state-of-the-art advancements in natural language processing (NLP) and information retrieval (IR). The task of constructing the finest automatic extractive Question Answering system from the Holy Qur{'}an with the use of the recently available Qur{'}anic Reading Comprehension Dataset(QRCD) was announced for LREC 2022 (Malhas et al., 2022) which opened up this new area for researchers around the world. In this paper, we propose a novel Qur{'}an Question Answering dataset with over 700 samples to aid future Qur{'}an research projects and three different approaches where we utilised self-attention based deep learning models (transformers) for building reliable intelligent question-answering systems for the Holy Qur{'}an that achieved a partial Reciprocal Rank (pRR) best score of 52{\%} on the released QRCD test se",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sleem-etal-2022-stars">
<titleInfo>
<title>Stars at Qur’an QA 2022: Building Automatic Extractive Question Answering Systems for the Holy Qur’an with Transformer Models and Releasing a New Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Sleem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eman</namePart>
<namePart type="given">Mohammed</namePart>
<namePart type="given">lotfy</namePart>
<namePart type="family">Elrefai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marwa</namePart>
<namePart type="given">Mohammed</namePart>
<namePart type="family">Matar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haq</namePart>
<namePart type="family">Nawaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur’an QA and Fine-Grained Hate Speech Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tamer</namePart>
<namePart type="family">Elsayed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamdy</namePart>
<namePart type="family">Mubarak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdulmohsen</namePart>
<namePart type="family">Al-Thubaity</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walid</namePart>
<namePart type="family">Magdy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Holy Qur’an is the most sacred book for more than 1.9 billion Muslims worldwide, and it provides a guide for their behaviours and daily interactions. Its miraculous eloquence and the divine essence of its verses (Khorami, 2014)(Elhindi,2017) make it far more difficult for non-scholars to answer their questions from the Qur’an. Here comes the significant role of technology in assisting all Muslims in answering their Qur’anic questions with state-of-the-art advancements in natural language processing (NLP) and information retrieval (IR). The task of constructing the finest automatic extractive Question Answering system from the Holy Qur’an with the use of the recently available Qur’anic Reading Comprehension Dataset(QRCD) was announced for LREC 2022 (Malhas et al., 2022) which opened up this new area for researchers around the world. In this paper, we propose a novel Qur’an Question Answering dataset with over 700 samples to aid future Qur’an research projects and three different approaches where we utilised self-attention based deep learning models (transformers) for building reliable intelligent question-answering systems for the Holy Qur’an that achieved a partial Reciprocal Rank (pRR) best score of 52% on the released QRCD test se</abstract>
<identifier type="citekey">sleem-etal-2022-stars</identifier>
<location>
<url>https://aclanthology.org/2022.osact-1.18</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>146</start>
<end>153</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stars at Qur’an QA 2022: Building Automatic Extractive Question Answering Systems for the Holy Qur’an with Transformer Models and Releasing a New Dataset
%A Sleem, Ahmed
%A Elrefai, Eman Mohammed lotfy
%A Matar, Marwa Mohammed
%A Nawaz, Haq
%Y Al-Khalifa, Hend
%Y Elsayed, Tamer
%Y Mubarak, Hamdy
%Y Al-Thubaity, Abdulmohsen
%Y Magdy, Walid
%Y Darwish, Kareem
%S Proceedinsg of the 5th Workshop on Open-Source Arabic Corpora and Processing Tools with Shared Tasks on Qur’an QA and Fine-Grained Hate Speech Detection
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F sleem-etal-2022-stars
%X The Holy Qur’an is the most sacred book for more than 1.9 billion Muslims worldwide, and it provides a guide for their behaviours and daily interactions. Its miraculous eloquence and the divine essence of its verses (Khorami, 2014)(Elhindi,2017) make it far more difficult for non-scholars to answer their questions from the Qur’an. Here comes the significant role of technology in assisting all Muslims in answering their Qur’anic questions with state-of-the-art advancements in natural language processing (NLP) and information retrieval (IR). The task of constructing the finest automatic extractive Question Answering system from the Holy Qur’an with the use of the recently available Qur’anic Reading Comprehension Dataset(QRCD) was announced for LREC 2022 (Malhas et al., 2022) which opened up this new area for researchers around the world. In this paper, we propose a novel Qur’an Question Answering dataset with over 700 samples to aid future Qur’an research projects and three different approaches where we utilised self-attention based deep learning models (transformers) for building reliable intelligent question-answering systems for the Holy Qur’an that achieved a partial Reciprocal Rank (pRR) best score of 52% on the released QRCD test se
%U https://aclanthology.org/2022.osact-1.18
%P 146-153
Markdown (Informal)
[Stars at Qur’an QA 2022: Building Automatic Extractive Question Answering Systems for the Holy Qur’an with Transformer Models and Releasing a New Dataset](https://aclanthology.org/2022.osact-1.18) (Sleem et al., OSACT 2022)
ACL