
Text Classification Using a Graph

 Based on Relationships Between Documents

Hiromu Nakajima Minoru Sasaki
Graduate School of Sci. and Eng., Ibaraki

Univ./ 4-12-1 Nakanarisawacho, Hitachi City,

Ibaraki Prefecture, 316-8511, Japan

Graduate School of Sci. and Eng., Ibaraki

Univ./ 4-12-1 Nakanarisawacho, Hitachi City,

Ibaraki Prefecture, 316-8511, Japan

22nm738g@vc.ibaraki.ac.jp minoru.sasaki.01@vc.ibaraki.ac

.jp

Abstract

Text classification, which determines the genre

of a document based on cues such as the co-

occurrence of words and their frequency of

occurrence, has been studied in various

approaches to date. Conventional text

classification methods using graph-structured

data express relationships between words and

between words and documents in the form of

weights of edges between each node. Then, the

graph is input to a graph neural network for

learning. However, conventional methods do not

represent the relationship between documents on

the graph, and thus cannot directly consider the

relationship between documents. Therefore, we

propose a text classification method using the

graph considers the relationships among

documents. This method directly expresses the

relationship between documents by adding the

similarity of documents as weights of edges

between document nodes to the graph of the

conventional method. The constructed graph is

then input to a graph convolutional neural

network for learning. We conducted

experiments using five English corpus (20NG,

R52, R8, Ohsumed, and MR) to evaluate

proposed method. The results show that the

proposed method improves accuracy compared

to the conventional method and that the use of

relationships among document nodes is effective.

Experimental results also show that the proposed

method is particularly effective on datasets with

relatively long documents.

1 Introduction

Text classification is the task of estimating an

appropriate label for a given document from a set of

predefined labels. This task is one of the

fundamental problems in natural language

processing. This technique has been applied in the

real world to automate the task of document

classification by humans. Many researchers are

interested in developing applications that leverage

text classification methods such as Junk mail

classification, topic labeling and sentiment analysis.

In the past few years, convolutional neural

networks that can take advantage of graph structural

information have been used in solving text

classification problems. TextGCN (Yao et al., 2019)

is one of the examples of graph-based text

classification methods. In TextGCN, word nodes

and document nodes are represented on the same

graph, which is input to GCN for learning. VGCN-

BERT (Lu et al., 2020) trained by constructing a

graph based on word co-occurrence information and

word embedding representation of BERT and

inputting the graph to GCN. RoBERTaGCN

(Yuxiao et al., 2021) is a text classification method

that combines the benefits of GCN's transductive

learning with the knowledge gained from BERT's

large-scale prior learning using large amounts of

unlabeled data. This method boasts the best

performance among existing methods for text

classification with four datasets: 20NG, R8,

Ohsumed, and MR. The graphs in these text

classification methods use word-to-word and word-

to-document relationships. However, conventional

graph-based text classification methods do not use

the relationship between documents. Therefore, we

thought that accuracy could be improved by using

the relationship between documents.

In this study, we aimed to solve the problem of

Conventional graph-based text classification

methods described above paragraph by adding

relations between documents to the edges between

document nodes, and to improve the classification

performance of RoBERTaGCN. Specifically, we

input each document into the BERT model and

obtain the vector of '[CLS]' token in final hidden

layer. Then, we calculated the cosine similarity of

these '[CLS]' token vectors of each document and

added the cosine similarity that exceeded a

predetermined threshold as a weight between

document nodes. Then, we can create an effective

graph structure that considers the relation between

document nodes to improve the accuracy in each

dataset of RoBERTaGCN. In addition, we consider

that topic drift is less likely to occur because

document information can be propagated without

going through word nodes.

2 Related Work

Graph neural networks (Scarselli et al., 2008) are

neural networks that learn relationships between

graph nodes via the edges that connect them. There

are several types of GNNs. The graph convolutional

networks (Kipf and Welling, 2016a) takes a graph

as input and learns the relationship between the

nodes of interest and their neighbors through

convolutional computation using weights assigned

to the edges between the nodes. The graph

autoencoder (Kipf and Welling., 2016b) is the

autoencoder that extracts important features by

dimensionally collapsing the input data. In Graph

Attention Network (Velickovi et al., 2017), the

weights of edges between nodes and the coefficients

representing the importance of neighboring nodes

are used to extract important features. GNNs have

been used in a wide range of tasks in the field of

machine learning, such as relation extraction, text

generation, machine translation and question

answering. In the field of machine learning, GNNs

have been used in a wide range of tasks and have

demonstrated high performance. The success of

GNNs in these wide range of tasks has motivated us

to study text classification methods using GNNs. In

TextGCN (Yao et al., 2019), document nodes and

word nodes are represented on the same graph

(heterogeneous graph), which is input to the GCN

for training. Recently, there has been a lot of

research on text classification methods that combine

large scale pre-training models such as BERT with

GNNs. VGCN-BERT (Lu et al., 2020) trained by

constructing a graph based on word co-occurrence

information and word embedding representation of

BERT and inputting the graph to GCN. In BertGCN

(Yuxiao et al., 2021), the heterogeneous graph of

words and documents is constructed based on word

co-occurrence information and BERT's document

embedding representation, and the graph is input to

GCN for learning. A detailed description of

BertGCN is given in the next chapter.

3 RoBERTaGCN

BertGCN is a text classification method that

combines the transductive learning of GCN with the

knowledge gained from large-scale pre-training

using large amounts of unlabeled data in BERT.

BertGCN is trained by inputting each document into

BERT, extracting document vectors from its output,

and inputting them into GCN as initial

representations of document nodes along with

heterogeneous graphs of documents and words.

BertGCN has now achieved state-of-the-art in the

text classification task.

In BertGCN, the weights between nodes on a

heterogeneous graph of words and documents are

defined as shown in Equation (1) below. PPMI is

used as the weights between word nodes, and TF-

IDF is used as the weights between word and

document nodes. As shown in equation (1),

BertGCN does not express the relations between

document nodes as the form of edge weights

between nodes.

𝐴𝑖,𝑗 =

{

𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Yuxiao Lin et al. distinguish the names of the

training models depending on the type of GNN and

the pre-trained models of BERT. The names of the

models are listed in Table 1. In this study, we

targeted RoBERTaGCN for improvement.

Pre-Trained Model GNN Name of Model

bert-base GCN BertGCN

roberta-base GCN RoBERTaGCN

bert-base GAT BertGAT

roberta-base GAT RoBERTaGAT

Table 1. Names of the Models

4 Method

First, we construct a heterogeneous graph of words

and documents using each document. Next, we

input the graph information (weight matrix and

initial node feature matrix) to BERT and GCN and

obtain each prediction. Finally, we calculate the

linear interpolation of each prediction and adopt the

result as the final prediction.

4.1 Build Heterogeneous Graph

First, we build a heterogeneous graph containing

word nodes and document nodes. The weights of the

edges between nodes 𝑖 and 𝑗 are defined as in

Equation (2).

𝐴𝑖,𝑗 =

{

𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),

𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

In RoBERTaGCN, as shown in Equation (1), the

relation between words and the relation between

words and documents were considered as the form

of edge weights between nodes, but the relation

between documents was not considered. Therefore,

we improved RoBERTaGCN to consider the

relation between documents by expressing the

relation between documents as the form of edge

weights between document nodes. 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗)
in equation (2) is the weight of the edge between

document nodes and represents the cosine similarity.

Specifically, we added the weights of the edges

between document nodes by following the steps Ⅰ to

Ⅲ below.

Ⅰ. tokenize each document

Each document is tokenized by the BertTokenizer

and converted into a sequence of tokens that can be

input to BERT. If the number of words in a

document exceeds the BERT input limit of 512,

including special tokens, 510 words were extracted

from the front of the document and used.

Ⅱ. obtain the CLS vector

Each tokenized document is entered into BERT

to obtain the CLS vector at its final hidden layer,

which is a vector reflecting the features of the entire

document.

Ⅲ. calculate and add cosine similarity

Calculate the cosine similarity between the CLS

vectors of each acquired document. If the obtained

cosine similarity exceeds a predetermined threshold,

the cosine similarity is added as the weight of the

edge between the corresponding document nodes.

We used positive mutual information (PPMI) for

weight of the edges between word nodes. We used

TF-IDF for weight of the edges between word nodes

and document nodes. The process from the second

section onward is in accordance with

RoBERTaGCN.

4.2 Creating the Initial Node Feature Matrix

The next step is to create the initial node feature

matrix to be input to the GCN. We use BERT to

obtain document embedding representations and

treat them as input representations of document

nodes. The embedding representation 𝑋𝑑𝑜𝑐 of a

document node is represented by 𝑋𝑑𝑜𝑐 ∈ ℝ
𝑛𝑑𝑜𝑐×𝑑

using the number of documents 𝑛𝑑𝑜𝑐 and the

number of embedding dimensions 𝑑. In general, the

initial node feature matrix is given by the following

equation (3).

𝑋 = (
𝑋𝑑𝑜𝑐
0
)
(𝑛𝑑𝑜𝑐+𝑛𝑤𝑜𝑟𝑑)×𝑑

(3)

4.3 Input to GCN and Learning by GCN

The weights of the edges between nodes and the

initial node feature matrix shown in equations (2)

and (3) are input to the GCN for training. The output

feature matrix 𝐿(𝑖) of the 𝑖-th layer is calculated by

Equation (4).

𝐿(𝑖) = 𝜌(�̃�𝐿(𝑖−1)𝑊(𝑖)) (4)

𝜌 is the activation function, �̃� is the normalized

adjacency matrix. 𝑊𝑖 ∈ ℝ𝑑𝑖−1×𝑑𝑖 is the weight

matrix at layer 𝑖, 𝐿(0) is 𝑋, which is the input feature

matrix of the model. The output of the GCN is

treated as the final representation of the document

nodes, and its output is input to the softmax function

for classification. The prediction by the output of

GCN is given by equation (5). 𝑔 represents the

GCN model.

𝑍𝐺𝐶𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋, 𝐴)) (5)

4.4 Interpolation of Predictions with BERT

and GCN

We optimize the GCN with an auxiliary classifier

that directly handles the BERT embedded

representation for faster convergence and better

performance. Specifically, we create an auxiliary

classifier with BERT by feeding the document

embedding representation X and the weight matrix

W directly into the softmax function. The prediction

by the auxiliary classifier is given by the following

equation (6).

𝑍𝐵𝐸𝑅𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑋) (6)

Then, a linear interpolation is performed using

𝑍𝐺𝐶𝑁 which prediction from RoBERTaGCN and

𝑍𝐵𝐸𝑅𝑇 which prediction from BERT, and the result

of the linear interpolation is adopted as the final

prediction. The result of linear interpolation is given

by equation (7).

𝑍 = 𝜆𝑍𝐺𝐶𝑁 + (1 − 𝜆)𝑍𝐵𝐸𝑅𝑇 (7)

𝜆 controls the trade-off between the two

predictions, meaning that if 𝜆 = 1, we use the full

RoBERTaGCN model, and if 𝜆 = 0, we use only

the BERT module. 𝜆 ∈ (0, 1), we can balance the

predictions from both models and RoBERTaGCN

model can be more optimized. 𝜆 = 0.7 is the

optimal value of 𝜆, as shown by the experiments of

Yuxiao.

5 Experiments

We evaluated the classification performance of the

proposed method by conducting experiments with

the cosine similarity threshold set between 0.5 and

0.95 to 0.995 in increments of 0.005 and

investigated the optimal cosine similarity threshold

for each data set.

5.1 Dataset

We evaluated the performance of the proposed

method by conducting experiments using the five

data sets shown in Table 2. We used the same data

1 https://github.com/ZeroRin/BertGCN/tree/main/data

used in RoBERTaGCN. Each dataset was already

divided into training and test data, which we used as

is.1 The number of data for training and test data is

shown in Table 2.

・20-Newsgroups(20NG)

20NG is a dataset in which each document is

categorized into 20 news categories, and the total

number of documents is 18846. In our experiments,

we used 11314 documents as training data and 7532

documents as test data.

・R8, R52

Both R8 and R52 are subsets of the dataset provided

by Reuters (total number is 21578). R8 has 8

categories and R52 has 52 categories. The total

number of documents in R8 is 7674, and we used

5485 documents as training data and 2189

documents as test data. The total number of

documents in R52 is 9100, and we used 6532

documents as training data and 2568 documents as

test data.

・Ohsumed

This is a dataset of medical literature provided by

the U.S. National Library of Medicine, and total

number of documents is 13929. Every document has

one or more than two related disease categories

from among the 23 disease categories. In the

experiment, we used documents that had only one

relevant disease category, and the number of

documents is 7400. We used 3357 documents as

training data and 4043 documents as test data.

・Movie Review(MR)

This is a dataset of movie reviews and is used for

sentiment classification (negative-positive

classification). The total number of documents was

10662. We used 7108 documents as training data

and 3554 documents as test data.

Dataset Number of Documents Average of Words Training Data Test Data
20NG 18846 206.4 11314 7532
R8 7674 65.7 5485 2189
R52 9100 69.8 6532 2568
Ohsumed 7400 129.1 3357 4043
MR 10662 20.3 7108 3554

Table2. Information of Each Data Set

5.2 Experimental Environment

The experiments were conducted using Google

Colaboratory Pro+, an execution environment for

Python and other programming languages provided

by Google. The details of the specifications of

Google Colaboratory Pro+ are shown in Table 3.

We experimented by setting the threshold of

cosine similarity between 0.5 and 0.95 to 0.995 in

increments of 0.005 when adding the cosine

similarity of CLS vectors as the weight of edges

between document nodes. The performance of the

proposed method was evaluated by verifying the

prediction results with test data and obtaining the

percentage of correct answers.

5.3 Result of Experiment

The result of experiment for each threshold of

cosine similarity are shown in Table 4, along with

the correct response rate of the original

RoBERTaGCN.

The items marked as × are experiments could not

be completed due to lack of memory. Items marked

with "-" are those for which the percentage of

correct responses was not indicated in the original

paper. In experiment with Ohsumed, the

experiments with threshold of 0.99 and 0.995, and

threshold of 0.975 and 0.98 had the same number of

edges of the cosine similarity of CLS vectors, so

they are denoted together. It was confirmed that the

proposed method outperformed the original

RoBERTaGCN on all datasets at certain thresholds,

but for R8, R52, and MR, there were only one or

two thresholds where the proposed method

outperformed the original RoBERTaGCN. On the

other hand, 20NG outperformed the original

RoBERTaGCN at all thresholds from 0.95 to 0.995,

and Ohsumed also outperformed the original

RoBERTaGCN at most of the thresholds. Most

notably, the experiment with 20NG of threshold

0.975 outperformed the original RoBERTaGCN by

0.67% and the experiment with Ohsumed of

GPU
Tesla V100（SXM2）

／A100（SXM2）

Memory

12.69GB（standard）

／51.01GB（CPU／GPU(high memory)）

／35.25GB（TPU(high memory)）

Disk
225.89GB（CPU／TPU）

／166.83GB（GPU）

Table3. Details of the Specifications of Google Colaboratory Pro+

 20NG R8 R52 Ohsumed MR

Text GCN 86.34 97.07 93.56 68.36 76.74
Simplified GCN 88.50 - - 68.50 -

LEAM 81.91 93.31 91.84 58.58 76.95

SWEM 85.16 95.32 92.94 63.12 76.65

TF-IDF+LR 83.19 93.74 86.95 54.66 74.59

LSTM 65.71 93.68 85.54 41.13 75.06

fastText 79.38 96.13 92.81 57.70 75.14

RoBERTaGCN 89.15 98.58 94.08 72.94 88.66

0.5 × 49.47 × 64.73 ×

0.95 89.29 98.26 92.83 73.73 88.21

0.955 89.42 98.63 94.08 72.74 88.21

0.96 89.74 98.49 94.16 73.49 88.52

0.965 89.54 98.45 93.15 74.13 88.15

0.97 89.43 98.45 93.77 73.41 88.66

0.975 89.82 98.63 93.57
73.49

89.00

0.98 89.60 98.54 93.96 88.29

0.985 89.64 98.54 92.95 73.46 88.58

0.99 89.76 98.36 93.42
73.71

88.55

0.995 89.51 98.81 93.26 88.31

Table4. Result of Experiment

threshold 0.965 outperformed the original

RoBERTaGCN by 1.19%.

6 Discussion

Table 5 shows the number of various edges added

and the average of cosine similarity in each data set.

The item marked as × is the experiment could not

be completed adding weight due to lack of memory.

In the experiment where the threshold was set to 0.5,

the experiment could not be completed due to lack

of memory in the datasets of 20NG, R52, and MR.

Even for R8 and Ohsumed, which were able to

complete the experiment, the classification

performance was much lower than that of the

original RoBERTaGCN. The reason for both is that

the number of edge weights between document

nodes to be added became too large. In all datasets,

the number of edges of cosine similarity is more

than twice as large as the number of PMI edges and

TF-IDF edges. In addition, since the average of the

cosine similarity of the CLS vector is between

0.8~0.85 in all datasets, it is thought that a huge

number of weights of edges between document

nodes that are not in the same genre are also added,

and they have become noise.

Analyzing the average number of words for each

dataset in Table 2 and the experimental results in

Table 4, we can see that the proposed method tends

to obtain higher classification performance for

datasets with higher average number of words

compared to the original RoBERTaGCN. We

believe this is because the higher the average word

count, the better the CLS vectors of the documents

reflect the features of those documents and the more

cosine similarity weights are added between

document nodes of the same genre. On the other

hand, the lower the average number of words, the

less the difference in the CLS vectors of the

documents, the higher the cosine similarity of the

CLS vectors of the documents in different genres,

and the more cosine similarity weights were added

to the weights between the nodes of the documents

in different genres. This is thought to be the reason

why the classification performance did not improve

as expected in experiments with dataset have lower

the average number of words.

We calculated the percentage of the number of

added cosine similarities at the threshold of the

cosine similarity of the CLS vector that shows the

highest classification performance in Table 4. The

calculation results are shown in Table 6.

Since there is no relationship between the

percentage of the number of added edges and the

classification performance, we think it is necessary

to conduct future experiments using criteria such as

"upper XX% of the cosine similarity value", instead

of using the threshold of the cosine similarity of the

CLS vector to determine the weights to be added

between document nodes, to clarify the relationship

between the number of edges between document

nodes and the classification performance.

7 Conclusion and Future Work

In this paper, we confirmed that RoBERTaGCN can

be improved by adding the cosine similarity of CLS

vectors of documents as weights of edges between

document nodes, and that it outperforms the

classification performance of the original

Dataset pmi Edge tf-idf Edge cos_sim Edge Average of Cosine Similarity

20NG 22413246 2276720 × 0.838

R8 2841760 323670 29441186 0.846

R52 3574162 407084 41400215 0.840

Ohsumed 6867490 588958 27376155 0.837

MR 1504598 196826 56674250 0.823

Table5. Number of Various Edges Added and the Average of Cosine Similarity

Dataset
Total Number of Document

Node Combinations
Number of cos_sim Edges Added

Percentage of Edges

Added

20NG 177576435 753 0.0004240

R8 29441301 175 0.0005944

R52 41400450 28890 0.0697818

Ohsumed 27376300 15 0.0000547

MR 56833791 921 0.0016205

Table 6. Percentage of the Number of Edges Added

RoBERTaGCN. In particular, experiments show

that the proposed method is effective for long

documents.

In the future, we intend to study the compatibility

of the proposed method with GAT and the optimal

value of the parameter λ for linear interpolation.

References

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus

Hagenbuchner, and Gabriele Monfardini. 2008. The

graph neural network model. IEEE Transactions on

Neural Networks, 20(1):61–80.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego

Marcheggiani, and Khalil Sima’s an. 2017. Graph

convolutional encoders for syntax-aware neural

machine translation. In Proceedings of the 2017

Conference on Empirical Methods in Natural

Language Processing, pages 1957-1967, Copenhagen,

Denmark. Association for Computational Linguistics.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.

Graph convolutional networks for text classification.

In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 7370-7377.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong Zhang,

and Houfeng Wang. 2019. Text level graph neural

network for text classification. arXiv preprint

arXiv:1910.02356.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio.

2017. Graph attention networks. arXiv preprint

arXiv:1710.10903.

Rushlene Kaur Bakshi, Navneet Kaur, Ravneet Kaur, and

Gurpreet Kaur. 2016. Opinion mining and sentiment

analysis. In 2016 3rd International Conference on

Computing for Sustainable Global Development

(INDIACom), pages 452-455. IEEE.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes

Nikzad, Meysam Chenaghlu, Jianfeng Gao. 2021.

Deep Learning Based Text Classification: A

Comprehensive Revie. arXiv:2004.03705v3

Thomas N Kipf and Max Welling. 2016b. Variational

graph auto-encoders. arXiv preprint

arXiv:1611.07308.

Thomas N Kipf and Max Welling. 2016a.

Semisupervised classification with graph

convolutional networks. arXiv preprint

arXiv:1609.02907.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv.

2020. Tensor graph convolutional networks for text

classification

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,

Kun Kuang, Jiwei Li and Fei Wu. 2021. BertGCN:

Transductive Text Classification by Combining GCN

and BERT.

Zhibin Lu, Pan Du, and Jian-Yun Nie. 2020. Vgcn-bert:

augmenting bert with graph embedding for text

classification. In European Conference on Information

Retrieval, pages 369-382. Springer.

