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Abstract

This paper presents a new human-in-the-
loop text classification framework with no
labeled data incorporating weak supervision
and Bayesian active learning with a seman-
tic clustering constraint. Labeling function
(LF)-based weak supervision is a promising
method to alleviate the huge labeling cost in
supervised learning. However, most previ-
ous studies relied on the impractical assump-
tion of sufficient and well-designed pre-built
LFs, even though they also require a heavy
workload to implement. The proposed frame-
work is the first intended to substantially re-
duce this workload by a human-in-the-loop
approach from scratch. Specifically, it inter-
actively suggests data samples to help humans
implement an LF considering the actual hu-
man workload. Its superiority is achieved by
Bayesian active learning with a semantic clus-
tering constraint for not only enhancing label-
ing utility but also reducing human workload.
The results of the user studies with 16 vol-
unteers demonstrate that the proposed method
can achieve higher performance with fewer
LFs and help humans implement more accu-
rate LFs in a shorter work time than conven-
tional methods.

1 Introduction

Supervised learning assuming the availability of
massive labeled data has been put into practical use,
but this assumption has also been the main obsta-
cle to expanding its use. To overcome this obstacle,
weak supervision (WS) has gained much attention
as a promising method. It is incomplete, inexact,

or inaccurate supervision as an alternative to strong
supervision such as a fully labeled dataset (Zhou,
2017). Specifically, labeling function (LF) is a rep-
resentative approach used in both academia and in-
dustry (Bach et al., 2019; Fries et al., 2019). LF is
a human-defined function based on heuristics, col-
lective knowledge, or implicit rules for indirect la-
beling instead of manual direct labeling. Its main
strengths are its high performance and robustness to
task changes (Ratner et al., 2016; Bach et al., 2017).

Even though LF-based WS alleviates the huge and
redundant labeling cost, it usually depends on suf-
ficient and well-designed pre-built rules and meta-
rules for LFs. When implementing LFs in the wild
from scratch, the difference in the required work-
load and the potential benefits on each LF must
be considered. Thus, there are two issues left to
be solved simultaneously for the practical LF-based
WS framework. First, only high-performance LFs
should be implemented. Second, humans should be
able to implement more accurate LFs with a lighter
workload, that is, in a shorter work time.

The most appropriate and pragmatic approach to
solve both issues is a human-in-the-loop approach.
Especially, active learning (AL) (Settles, 2009) is
a key method to solve the first issue. A few re-
cent studies have attempted to develop an AL-like
framework for WS (Wang et al., 2019; Saisho et al.,
2021). These methods try implementing effective
LFs interactively, but they disregard the workload
for each LF. In addition, their effectiveness has been
verified only in simulation settings under unrealistic
assumptions such as “selecting” the best one among
the “pre-defined” candidates for each loop. From the



viewpoint of practical WS in the wild from scratch,
the superiority in LF should be determined on the
basis of the work time to design it, the voting cover-
age of the applicable data samples, and the accuracy
of the voting, other than the labeling utility in AL.

The research objective is to reduce the substan-
tial workload of humans while achieving high per-
formance in the practical WS framework in the wild
from scratch. The main contribution of this paper is
the proposal and verification of a practical human-
in-the-loop WS framework by Bayesian AL with a
semantic clustering constraint. In each loop, this
framework suggests data samples that not only have
high utility for labeling but also elicit probable hu-
man knowledge to help humans evoke common la-
beling rules for a new LF with a lighter workload.
Especially, the data samples are suggested on the
basis of utility scores calculated by batchBALD ac-
quisition function under the constraints of the batch
being formed by data samples belonging to an iden-
tical semantic cluster. This constraint is the key to
filling the gap in the practice of a human-in-the-loop
WS. The results of the user studies with 16 volun-
teers verified the high performance of the classifier
trained by using a small number of LFs, the short
work time required to implement LFs, and the high
accuracy of the LFs’ votings. As an adjunct to the
above contribution, this paper also shows an empiri-
cal validation method in human-in-the-loop WS that
uses LFs as a substitute for ground truth, without any
additional workload or implicit label leakage.

2 Related work

Towards the practical LF-based WS, the reduction
of LF implementation cost has gained considerable
attention in the past few years. Some researchers
have proposed fully automated methods by transfer
learning and few-shot learning approaches (Varma
and Ré, 2018; Das et al., 2020). Their insights are
significant, but they have also eliminated positive as-
pects of WS in practical use. They incur the uninter-
pretability because of the dependency on the implicit
domain similarity and the distribution of the few-
shot data (Raghu et al., 2019; Chen et al., 2019).
On the other hand, a human-in-the-loop approach
will work well with LF-based WS because of their
analogous advantages if humans can implement LFs

from their knowledge with light workload. Trans-
parency and fairness are the primary reasons that
human-in-the-loop is attracting attention (Holzinger,
2016; Li, 2017; Lertvittayakumjorn et al., 2020).
Especially, AL is the representative human-in-the-
loop approach toward reducing labeling costs.

Existing methods to combine WS and AL can be
categorized into four types. The first type is “AL
with WS” (Nashaat et al., 2018; Nashaat et al., 2020;
Biegel et al., 2021). This type trains a classifier us-
ing “pre-built” WS and then improves its classifi-
cation performance by direct labeling in AL. The
second type is “WS with AL” (Qian et al., 2020;
Gonsior et al., 2020). This type attaches labels di-
rectly by AL and augments the labeled dataset by
“pre-built” WS. These two types can lighten some-
what humans’ tasks in the conventional AL, but they
cannot change the redundancy of the tasks. The
third type is “AL for automated WS” (Kartchner et
al., 2020; Boecking et al., 2021). This type is an
AL framework that automatically generates WS on
the basis of “pre-built” meta patterns and asks hu-
mans to judge whether to accept them or not. It can
eliminate the redundant labeling cost, but their per-
formance depends on the pre-built resources such
as seed rules and structure information as the au-
tomated WS above. The most significant problem
common to these three types in practice is that they
all still depend on the existence of unrealistic pre-
built resources. Even though they are human-in-
the-loop approaches, preparing such well-designed
meta resources without any support before the loops
is difficult and unrealistic in the wild.

The last type is “AL for WS from scratch” (Wang
et al., 2019; Saisho et al., 2021). This type is an
AL framework that helps humans implement WS by
suggesting a few data samples that have the highest
labeling utility. Only this type is pragmatic in the
wild because it does not require any presupposed re-
sources and humans can implement WS in any for-
mat. It can reduce the number of LFs to be manually
implemented, but this is still not enough for practi-
cal use in the wild. It is not human-friendly because
it does not consider any characteristic of human-
defined LFs. First, each LF requires a very differ-
ent amount of workload to implement. Furthermore,
both the coverage and the accuracy of LFs need to be
enhanced in the case of WS, where there is no oracle



Figure 1: Overall framework: a few data samples are selected by batchBALD under the clustering constraint and then
a human implements a new LF referring to them in each loop (performed in the order of blue, green and red).

that always attaches correct labels (Dasgupta, 2005;
Ipeirotis et al., 2014). As a result, the superiority
of the existing methods is verified only in simula-
tion settings, i.e. human-in-the-loop without human
settings. Therefore, the proposed framework is the
first practical method of AL for WS from scratch in-
tended to substantially reduce human workload.

In addition, AL itself has faced criticisms for
practical use (Siddhant and Lipton, 2018; Atighe-
hchian et al., 2020). The main concerns are
inaccuracy of estimated uncertainty and implicit
label leakage. To overcome the first concern,
Bayesian AL such as Bayesian AL by Disagreement
(BALD) (Houlsby et al., 2011) has often been used
to estimate the uncertainty more accurately than
the traditional uncertainty-based methods (Yuan et
al., 2019). The proposed framework utilizes batch-
BALD with consistent Monte Carlo dropout (cMC-
dropout) (Kirsch et al., 2019) as an acquisition func-
tion in AL, which is an extension of BALD to se-
lect multiple data samples in a single loop. The
model uncertainty is calculated from the variance
in the output of multiple runs with different dropout
masks (Gal and Ghahramani, 2016) but fixed during
each epoch in cMCdropout. The maximum batch-
BALD score can be calculated by greedy approx-
imation thanks to the submodularity of the mutual
information. Label leakage, the second concern,
means that fully labeled validation datasets are im-
plicitly used for hyperparameter optimization or val-
idation during training, even though they are un-
available in a practical setting. This concern can
also be found in some WS studies. The proposed
framework entirely avoids making any implicit label
leakage by using LFs as a substitute for ground truth
in the validation step.

3 Framework

The proposed framework is a new method of AL for
WS from scratch, so the computer suggests a few
prioritized data samples, and humans implement an
LF in each loop. What is important is how to se-
lect the data samples to help humans design a more
effective and probable LF with a lighter workload.
To ensure the effectiveness, the proposed framework
has a soft attention Bayesian neural network (BNN)
derived from Ren et al. (2020) that both estimates
Bayesian uncertainty via cMCdropout and reduces
label noise of WS by attention mechanisms. In ad-
dition, to reduce the human workload, the proposed
framework has density clustering to aggregate data
samples having common semantic features and adds
a clustering constraint to the acquisition function for
considering the aggregation.

This section describes the proposed framework
by dividing it into six steps in each loop as shown
in Figure 1 1© - 6© for easy understanding. These
six steps are executed in order in each loop. Note
that the second and third step set and the fourth step
can be executed in parallel because there is no de-
pendency on their input data. The proposed frame-
work is designed for cooperation between humans
and computers, so each data sample d in the whole
unlabeled dataset D is assumed to have two repre-
sentation styles: (1) a human-recognizable represen-
tation such as a raw text; and (2) a feature vector
representation by embedding or feature extraction.
Also, let Y and n(·) denote the class label set and
the number of elements in a set, respectively.

The first step is applying LFs. Each LF in the set
of implemented LFs L receives d. The votes for d
by all LFs inL are combined into a voting result vec-
tor v ∈ {−1, 1, 2, . . . ,n(Y)}n(L). If the l-th compo-



Figure 2: Structure of the soft attention BNN: the posterior probability is calculated with Bayesian uncertainty thanks
to cMCdropout. To denoise the WS, the LF reliability is calculated for each data sample concatenated with the LF
votes and then weighted majority voting is performed using the LF reliability.

nent of v is -1, it means that the l-th LF has abstained
from voting. After the voting, D is divided into a
voted dataset Dl and an unvoted dataset Du depend-
ing on the voting results. If d has received at least
one LF vote for any class, i.e., if not all components
of the corresponding v are−1, d belongs toDl, oth-
erwiseDu. In addition, let Vl be the set consisting of
v corresponding to d belonging to Dl. For the fol-
lowing steps, let E ∈ Rn(Y)×n(L) be the expanded
vote matrix whose (c, l)-th component ecl is 1 if l-th
LF votes for class c, otherwise 0, and b ∈ Rn(L) be
the binarized vote vector whose l-th component is 1
if the l-th LF votes for any class, otherwise 0.

The second step is training and validating soft
attention BNN. Figure 2 shows the BNN struc-
ture. It receives Dl and Vl for training. Let
W={Wc1,Wc2,Wa1,Wa2} denote the set of weight
parameter matrices, {min,mc,ma} denote the cM-
Cdropout masks, and d̃ = d�min, where � is
Hadamard product, i.e., element-wise multiplica-
tion. The classifier estimation p(yc) is calculated by
a two-layer feedforward neural network as

p(yc)=softmax(WT
c2(ReLU(WT

c1d̃)�mc)). (1)

Let ṽ be a concatenation of d̃ and v corresponding
to d. To reduce the label noise of WS, the LF relia-
bility a∈Rn(L) whose l-th component al represents
the reliability of the l-th LF is calculated by the other
two-layer feedforward neural network as

a = softmax(WT
a2(tanh(WT

a1ṽ)�ma)). (2)

Then, the c-th component of attention estimation
p(ya) is calculated by the LF voting results weighted

by each LF reliability as

p(ya=c) =
exp (

∑
l eclal)∑

c′ exp (
∑

l ec′lal)
. (3)

To obtain a pseudo label ŷ, the averaged LF reliabil-
ity ā is calculated through Dl as

ā =
1

n(Dl)

∑
d∈Dl

(b� a). (4)

Then, ŷ is decided by weighted majority voting as

ŷ = argmax
c

∑
l

eclāl. (5)

The training is performed with ŷ as pseudo ground
truth and the loss defined as the weighted sum of
negative log likelihoods (NLL) from (ŷ, p(yc)) and
(ŷ, p(ya)) for co-training the classifier and the WS
denoiser. Let Ŵ denote the optimized weight pa-
rameters through the training. Thanks to the pseudo
labeling technique, validation can be performed with
no label leakage. A part of the unlabeled dataset
is separated as a validation dataset in advance. The
validation is performed with the pseudo ground truth
obtained by the denoised WS as in training.

The third step is estimating posterior probability
of Du on the optimized classifier with Ŵ . The out-
put posterior probability distribution of d∈Du con-
sidering the uncertainty is estimated by repeated es-
timation with a cMCdropout as p(y|d, Ŵ).

The fourth step is extracting semantic clusters by
density clustering. This step also receives Du. Let
Ck ⊂ Du denote the set of data samples belonging to



the k-th cluster. Note that the maximum number of
k changes depending on the clustering result. This
step enables the following sampling to suggest data
samples with semantic consistency to elicit probable
labeling rules for humans to design LFs with lighter
workload because the data in the identical cluster are
more likely to have common semantic features.

The fifth step is sampling. Let Ds and q(Ds) de-
note a small number of data samples selected from
Du and its acquisition function calculated by batch-
BALD, respectively. Calculation of batchBALD in-
volves using p(y|d, Ŵ) estimated in the third step.
The difference from the original batchBALD is the
clustering constraint added to make the sampling
human-friendly. The batch is formed by only data
samples belonging to an identical semantic cluster
to ensure semantic consistency in the batch. Thus, in
the implementation, batchBALD is applied for each
Ck extracted in the fourth step. The candidate data
samples D̃sk for each Ck are extracted as

D̃sk = argmax
Ds⊂Ck

q(Ds). (6)

Among these candidates, the one with the largest
batchBALD score is selected for the set of data sam-
ples D̃s to suggest for humans as

D̃s = argmax
D̃sk

q(D̃sk). (7)

BatchBALD with a clustering constraint is the key
to reducing the number of LFs and the workload of
LF designing simultaneously. Ratner et al. (2017)
remarks that human defined LF tends to have low
accuracy and large coverage. Trying to prevent it
leads to make the coverage too small. The proposed
framework can optimize the accuracy and the cover-
age by suggesting multiple data samples with com-
mon semantic features.

The last step is implementing a new LF. This is
the only step performed by humans. Humans im-
plement a new LF by referring to D̃s and add it to L.
The D̃s should have both semantic consistency and a
large utility in classification performance when cor-
rectly labeled by the new LF. This process is an
analogy for programming-by-examples in intuition-
based human programming since the entity of LF is
a simple program (Devlin et al., 2017). Thus, hu-
mans can implement an effective and probable LF

Table 1: Major parameter settings
The dimension of each hidden layer 128
learning rate 0.001
# of samples for cMCdropout 100
The maximum epoch for the training 1000
The patience of early stopping 100
The minimum cluster size 5
# of suggested samples in each loop 5

with light workload. Thereafter, the loop consisting
of these six steps is repeated the designated num-
ber of times while updating each variable associated
with the addition of the new LF.

4 Experiment

The object of the user studies with 16 consenting
volunteers in two text classification tasks is to verify
the effectiveness of the proposed method. The tasks
are SMS spam detection (Almeida et al., 2011) and
TREC-6 question classification (Li and Roth, 2002),
which were also used in recent WS studies (Awasthi
et al., 2020). These tasks do not require specialized
domain knowledge except for basic skills in English
reading comprehension and Python programming.
The volunteers were non-native English speaking
software engineers who met the above requirements
and offered from multiple groups. They were likely
to take on the labeling task and understand the task
but did not know about WS. This condition is desir-
able to verify the effectiveness of the method with
many subjects, even though it would be ideal to ver-
ify the method on tasks in which specialized domain
experts work well, such as medical data or finan-
cial data. Note that automatic experiments without
humans do not make sense because the objective of
the proposed method is to enable humans to design
probable LFs with light workload.

4.1 Settings

The number of classes and data samples for training,
validation, and test are 2, 4504, 500, 500 in SMS and
6, 4906, 546, 500 in TREC-6, respectively. Note
that no data include any ground truth labels in either
training or validation. Table 1 shows the major pa-
rameter settings of the framework used in the user
study. Hyper-parameters are not pre-optimized to
the tasks considering the constraints of AL for WS



from scratch in the wild. It is ideal to search for the
best hyper-parameters with humans, but this is im-
practical in terms of human workload. Thus, it was
also verified whether the hyper-parameters affect the
superiority of the proposed method by recalculation
using the implemented LFs. This setting is promis-
ing because the effectiveness of the implemented
LFs is more important in this experimental design
than the classification performance during the user
study.

The implementation used sentence
BERT (Reimers and Gurevych, 2019) pro-
vided by Hugging Face1 for feature extraction,
RAdam (Liu et al., 2020) for the optimizer, and
HDBSCAN (Campello et al., 2013; McInnes and
Healy, 2017) for the density clustering. The primary
motivation for these choices is that they are robust
to hyper-parameters and tolerant of overfitting in the
state-of-the-art natural language processing (NLP)
setting. Although it is common to use pre-trained
BERT models for NLP tasks, the wider domains
where the proposed method can be applied do not
necessarily enable the use of prior knowledge.
Thus, it was also verified whether the pre-training
affects the superiority of the proposed method
by recalculation using the features extracted by
doc2vec (PV-DM) (Le and Mikolov, 2014), which
is a representative method without pre-training.

To quantitatively verify the effectiveness of the
method, the proposed method (Proposed) was com-
pared to two other methods: batch extended Saisho
et al. (2021) (Active) as the state-of-the-art AL
for WS from scratch method and random sampling
with a clustering constraint (Semantic) for reference.
Note that the comparison with the other three types
in the related work is meaningless because the pre-
built resources used in those types are the very tar-
gets or even more sophisticated ones expected to be
implemented by subjects in the user study. “Seman-
tic” randomly extracts data samples from the ran-
domly extracted identical cluster. Simple random
sampling (without the clustering constraint) should
also be performed for an ablation study. However,
it was excluded from the verification to prevent in-
creasing the burden on subjects unnecessarily in the

1https://huggingface.
co/sentence-transformers/
paraphrase-distilroberta-base-v1

Figure 3: Four filled cells to implement a new LF in each
loop: humans can display the suggested samples and then
implement, verify, and save a new LF.

user study, considering that many existing studies
have already shown AL is superior to random sam-
pling. Similarly, to clarify in advance that the work
time for each subject would fit into the daily work-
ing hours, the number of loops was set to 15, i.e.,
the total number of implemented LFs in each task
is 45. The main evaluation metrics are the macro
F-measure for classification performance, the time
required to implement an LF, the accuracy of an LF
voting, and the coverage of an LF voting.

Subjects were to work on the Jupyter note-
books (Kluyver et al., 2016) provided for each task
as shown in Figure 3. When the first cell is run, the
five data samples suggested by a method are dis-
played, and the time measurement starts. Subjects
then implement an LF in a free format using Snorkel
Python library (Ratner et al., 2017; Ratner et al.,
2019) in the second cell, check its output by run-
ning the third cell, and repeat if they need to modify
it. Finally, the fourth cell is run to send the new LF
to a computer, and the time measurement is termi-
nated. The computer then trains the classifier and
selects the next suggested samples. Then, subjects
can proceed to the next loop.

To evaluate the three methods equally, the user
study devised two procedures. First, the subjects
were told to perform the experiment procedure in the
IMDB sentiment analysis (Maas et al., 2011) before-
hand without performance measurement. This helps
to reduce the effect on the results due to unfamiliar-
ity with WS and the experimental procedure. Sec-
ond, subjects were told to perform all three methods
in parallel in a random order, without knowing the



Figure 4: F-measures of each loop on each method: Pro-
posed outperformed the other methods in terms of classi-
fication performance in all plots for both tasks.

Table 2: The mean time [sec.] and its relative value re-
quired to implement an LF: Proposed and Semantic out-
performed Active thanks to the clustering constraint.

SMS TREC
Proposed 156± 143 192 ± 125

0.63± 0.23 0.75 ± 0.05
Active 221± 166 258 ± 179

1 1
Semantic 168 ± 137 197 ± 157

0.78 ± 0.28 0.75 ± 0.10

differences between methods. This is also to prevent
unfairness between methods due to mastery of WS
and leakage of knowledge about the dataset, which
may occur if the methods are conducted in series.

4.2 Results
Figure 4 shows the results of classification perfor-
mance. Proposed outperformed the other methods
in all plots in both tasks. These results quantita-
tively indicate that the proposed method enables hu-
mans to implement LFs with high utility. Slightly
surprisingly, Semantic performed so well that its su-
periority to Active was intersected by plots. This
viewpoint needs to be taken together with the per-
formance of each LF, so it will be described in later
paragraphs. In addition, the gray dashed lines show
the results when applying all 73 LFs for SMS and
68 LFs for TREC from a recent WS study (Awasthi
et al., 2020) to the classification model. The per-
formance of Proposed is close to that for SMS and
better than that for TREC. Note that the difference
from the original results mainly comes from using
some labeled data and a different evaluation metric
in the original study. These results also indicate the
effectiveness of the proposed method.

Table 2 shows the mean work times required to
implement an LF. Their relative values on the ba-
sis of the mean of Active for each subject are also

Figure 5: The mean accuracy and coverage of each LF:
Proposed and Semantic outperformed Active in terms of
helping humans to implement probable LFs.

listed since there are large individual differences in
the overall work time, Proposed reduced the work
times by 37% in SMS and 25% in TREC compared
with Active, respectively. These results quantita-
tively indicate that Proposed and Semantic are supe-
rior to Active in suggesting samples that elicit label-
ing rules for designing a new LF with a lighter work-
load. Thus, they show that the clustering constraint
works well to make the framework human-friendly.

Figure 5 shows the mean accuracy and mean cov-
erage of each LF. Accuracy is the rate of votes that
match the ground truth among the data samples in
which LF votes. Coverage is the rate of data sam-
ples in the training dataset that were voted to any
class by a single LF. In terms of coverage, there
was no significant difference between the methods
in SMS, so the superiority of the methods cannot be
determined. On the other hand, there is a large dif-
ference in accuracy between Active and other meth-
ods, i.e., depending on whether the clustering con-
straint is added or not. This explains not only the
reason Proposed is superior to other methods in the
F-measure shown in Figure 4, but also the reason Se-
mantic performs the same as or better than Active.
These results indicate the importance of consider-
ing the accuracy of LF in a true human-in-the-loop
situation in WS and the superiority of the proposed
method to help humans design probable LFs.

For reference, Figure 6 shows the examples of
data samples suggested at the same time by each
method. Although it is difficult to explicitly visu-
alize the difference in labeling utility by data sam-
ples, it should show the difference in the easiness of
implementing a probable LF.

Figure 7 shows the results of hyper-parameter
search by recalculations. The search spaces were
{32, 64, 128, 256} for the dimension of each hid-



Figure 6: Examples of data samples suggested at the
same time by each method in TREC task

Figure 7: F-measures of each loop on each method with
hyper-parameter search: the superiority of Proposed is
not significantly affected under each condition although
the superiority of a few plots is reversed. (Error bars are
omitted in favour of visibility.)

den layer (dim) and {0.0001, 0.001, 0.01, 0.1} for
the learning rate (lr). When one hyper-parameter
was searched for, the other was fixed to its default.

Lastly, Figure 8 shows the results obtained by
recalculations with feature vectors extracted by
doc2vec (PV-DM). In both recalculations, the over-
all trends do not differ significantly from the exper-
imental results shown in Figure 4 under each con-
dition although the superiority of a few plots is re-
versed and the overall performance changes. Thus,
these results indicate that the superiority of the pro-
posed method does not depend on hyper-parameters
or the pre-trained embedding.

From the results of the user studies, the proposed
method enables humans to implement more accu-
rate LFs that can attach labels with greater utility for
classification performance in a shorter work time.

4.3 Limitations and Future outlooks
In this section, three future outlooks are presented in
accordance with the limitations of this paper. First,

Figure 8: F-measures of each loop on each method with-
out pre-trained embedding: the superiority of Proposed
is not significantly affected although the superiority of a
few plots is slightly reversed.

Figure 9: Unsuitable example suggested by Proposed:
”Titanic” is a common feature among these samples, but
it is not a key in the classification. The samples actually
belong to several classes.

the common features extracted by semantic cluster-
ing may not always be effective for classification
tasks. In a few cases, the semantic clustering con-
straint did not work well and suggested samples un-
suitable for the classification task as shown in Fig-
ure 9. This indicates another support framework is
needed for learning the humans’ viewpoint from the
implemented LFs to make the semantic cluster con-
straint more directly related to LF implementation
support. For example, a supervised attention ap-
proach is discussed also in a recent study (Sen et
al., 2020). Incorporating explainable artificial in-
telligence (XAI) such as SHAP (Lundberg and Lee,
2017) should also be effective in eliciting more ex-
plicit rules for human-friendly support.

Second, errors can be reduced but not eliminated
and will accumulate further. The classification per-
formance was rarely degraded by adding an LF. This
is because negative effects of noisy LFs are much
larger than those of noisy labels in standard labeling.
In AL, some solutions for noisy labels have been de-
vised (Bouguelia et al., 2015; Bouguelia et al., 2018;
Lin et al., 2016). The framework that extends these
methods to noisy LFs should be very practical.

Lastly, some individual human differences in
knowledge and skills cannot be adequately sup-
ported, and the experiment was performed by only
software engineers. It is true that the LF implemen-
tation task depends more on individual skills than
the traditional direct labeling task. Thus, methods



to help LF implementation without programming
such as Hancock et al. (2018) should be effective
in compensating for people’s lack of skills. Beyond
that, the development of tools to integrate the pro-
posed method with autoML and no-code develop-
ment tools will lead to the democratization of NLP
as well as AI. From another point of view, task dis-
tribution including both LF implementation and di-
rect labeling is also an alternative research direction
when multiple humans perform a single task, espe-
cially as in crowdsourcing. Such frameworks can
provide an environment where anyone can work in
accordance with their skills.

5 Conclusion

This paper proposed a new method of practical ac-
tive learning (AL) for weak supervision (WS) in
the wild from scratch and demonstrated its superi-
ority in helping users to design and implement la-
beling functions (LFs) in terms of classification per-
formance, required work time, and LF accuracy in
user studies with a real interactive system and no la-
bel leakage. Its superiority is achieved by Bayesian
AL with a semantic clustering constraint for enhanc-
ing labeling utility, reducing human workload, and
enhancing the effectiveness of each LF.. For future
work, the model will be verified by other compli-
cated tasks and larger-scale user studies, in addition
to the future outlook.
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