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Abstract

One of the most important factors that sig-
nificantly affects the quality of sequence la-
beling models is the selection and encod-
ing of input features. The complexity and
morphological richness of Arabic language
is the main reason why most existing Ara-
bic Named Entity Recognition (NER) systems
rely heavily on hand-crafted feature engineer-
ing. To overcome such a limitation, we pro-
pose a novel neural network architecture to
tackle the Arabic NER task. The proposed ap-
proach takes advantage of the recent success
of deep neural networks in various Natural
Language Processing (NLP) applications. We
use a variant deep neural network architecture
combined with a combinatorial feature em-
bedding based on Convolutional Neural Net-
work (CNN), Long Short-Term Memory net-
works(LSTM) and BERT to generate rich se-
mantic and syntactic word representation vec-
tors. Without using any external knowledge
or hand-crafted feature engineering, the pro-
posed models outperform the state-of-the-art
systems on the ANERCorp dataset by yield-
ing an F1-score of 93.34% and 93.68 % using
bidirectional LSTM-CRF (BLC) and bidirec-
tional GRU-CRF (BGC) architectures, respec-
tively.

1 Introduction

Named Entity Recognition (NER) is defined as an
information extraction task which aims to identify,
extract and automatically categorize named entities
into a set of predefined categories such as persons,
organizations, locations, etc (Nadeau and Sekine,

2007). It is also considered as a mandatory pre-
processing module in many wider NLP applications,
such as information retrieval, speech recognition,
syntactic parsing, machine translation, text classifi-
cation, question answering, entity coreference reso-
lution and entity linking and disambiguation.
There is a fair amount of literature on NER research
in English, Chinese and other widely spoken lan-
guages. The massive growth of Arabic content on
the web has led to increased demand for develop-
ing accurate and robust Arabic NLP tools. In recent
years, Arabic NER has become a challenging task
and has received increasing attention from current
researchers due to its characteristics and peculiari-
ties (Farghaly and Shaalan, 2009), and given the lim-
ited availability of annotated datasets (Zirikly and
Diab, 2015).
Researchers interested in Arabic NER have mainly
pursued three approaches: rule-based (Mesfar,
2007; Zaghouani, 2012), machine learning-based
(Benajiba and Rosso, 2008) and hybrid methods
(Abdallah et al., 2012; Oudah and Shaalan, 2017).
All these three methods suffer from the same prob-
lem, as it requires a lot of language-specific knowl-
edge and feature engineering to obtain useful results.
This is even more highlighted by the deficiency of
linguistic resources and the complex morphology
and syntax of the language.
Recently, the deep learning paradigm (Mishra and
Gupta, 2017) has emerged and led to impressive ad-
vances in fields such as speech processing (Oord et
al., 2016) and image recognition (Hu et al., 2018).
For NLP, the application of deep learning has proven
to be very effective as it yields the state-of-the-art in



various common NLP tasks such as sequence label-
ing (Ma and Hovy, 2016) and named entity recog-
nition (Affi and Latiri, 2021) for the English lan-
guage. Unlike traditional methods, deep learning
is an end-to-end model that does not rely on data
pre-processing, manual feature extraction or large
amounts of task-specific resources, and it can be ap-
plicable to different languages and domains. This
makes it an attractive solution for complex and low
resource languages like Arabic.
Motivated by the success of deep learning in many
NLP tasks, we propose a novel Arabic NER ap-
proach based on deep neural networks. The pro-
posed model takes benefits from CNN and LSTM
to induce character-level representations of words.
These representations are fed in conjunction with
BERT word embeddings to a deep learning model
for further sequence modeling. Two RNN models
are investigated in this work: the Bi-LSTM and Bi-
GRU models. Finally, we use a Conditional random
fields (CRF) layer to get the probability distribution
over the tags.
The main contributions of the proposed Arabic NER
model are summarized as follows:

• We propose a novel neural network architecture
based on variant deep neural network architec-
tures combined with word embeddings based
on the CNN, LSTM and BERT to tackle the
Arabic NER task.

• We study the impact of the combinatorial fea-
ture embedding based on the CNN, Bi-LSTM
and BERT on Arabic NER.

• We investigate the use of two types of
character-level representations to slove the
Arabic NER task. We also show that using pre-
trained word embeddings enhances the system
performance.

• We give an empirical evaluation of this system
on the ANERCorp dataset.

• We evaluate our model against different base-
lines to demonstrate the empirical strength of
our work.

The remainder of this paper is structured as fol-
lows. In the next section, we review the related work

briefly. Section 3 presents the proposed model ar-
chitecture in detail. Section 4 describes the training
mechanism. Section 5 presents the experimental re-
sults and discussions. Finally, we conclude and dis-
cuss possible improvements for future work in sec-
tion 6.

2 Related work

Recent NER research studies have used deep learn-
ing, which proves its powerful ability for feature ab-
straction. As far as Arabic NER is concerned, some
consideration has been specified to neural models.
(Mohammed and Omar, 2012) proposed one of the
first artificial neural network for Arabic NER. The
authors introduced a simple feed forward ANN to
tackle the task. The suggested model consists of
three steps: data pre-processing, transforming Ara-
bic letters to Roman letters, after that the collected
data is categorised using a neural network. This ap-
proach was tested on the ANERCorp dataset. The
obtained results showed that the proposed method
gave better performance than the decision trees, and
the model accuracy improved with the size of the
data. A tagging model for Arabic NER was pro-
posed by (Awad et al., 2018). To solve the out-of-
vocabulary (OOV) problem, a CNN character-based
embedding layer was concatenated with Word2Vec
word embeddings to initialize the word represen-
tations. Then, the vector representations were fed
to a Bi-LSTM-CRF architecture. The system was
evaluated on the ANERCorp and AQMAR datasets.
Many hyper-parameter setting were checked, and
the model achieved an F1-score of 75.68% . Re-
cently, the attention mechanism has demonstrated
its effectiveness in different NLP applications such
as machine translation. It can handle long input se-
quences and learn to focus only on the most impor-
tant words. In (Ali et al., 2018), the authors added
a self-attention layer to enhance their Arabic NER
model. The proposed model learnt to give low or
high attention to words based on their context in the
input sentence. Also, the writers in (Ali et al., 2019)
introduced a multi-attention based model for Ara-
bic NER. This proposed system showed the impact
of using word-level embeddings and character-level
representations followed by a Bi-LSTM and self-
attention layers. Tested on the ANERCorp dataset,



it achieved an F1-score of 91.31% .
A recent work (Al-Smadi et al., 2020) examined
the impact of transfer learning on a Pooled-GRU
architecure for Arabic NER. Their model outper-
formed the Bi-LSTM-CRF model suggested by
(Sa’a et al., 2018).

3 Proposed neural network architecture

In this section, we describe the architecture of our
neural network model based on BERT word em-
beddings and CNN and LSTM-based character level
vectors for the Arabic NER task. The proposed sys-
tem comprises three main layers, namely an word
embedding layer, a context layer, and a tag decoder
layer.
Definition: Assuming an input sentence S coming
from a series of tokens of size ∥ V ∥ with a sequence
of labels Y = (y1, ..., yn), its word-level input is de-
fined as X = (x1, ..., xn), where xi is the ith token
in a series of words of size ∥ n∥ , and n is the num-
ber of the tokens in the input sentence. With a neural
sequence labeling system, the objective is to find the
adequate entity labels for all tokens in X , and then
assign a sequence of annotations ỹ ∈ Y to it, where
Y is the list of all possible tag categories. The high-
est probable symbol sequence ỹ is outputted by max-
imizing the sequence posterior probability of an op-
timal resulting sequence ỹ = (ỹ1, ỹ2, ..., ỹn), which
closely matches the gold annotations sequence y =
(y1, y2, ..., yn) that indicates the right label for each
given token.
As shown in Figure 1, our proposed model is com-
posed of three main blocks which are explained be-
low.

3.1 Embedding layer

The representation layer is designed to provide the
main features that will be used as a key component
for our NER system. The quality of features has a
significant impact on the model performance. Tra-
ditionally, features are hand-crafted keeping some
interesting rules that may not be relevant to other
areas. Thus, many state-of-the-art NLP approaches
tend to use various deep neural networks archi-
tecture for outputting distributed word representa-
tions in order to catch both syntactic and seman-
tic patterns of words. In distributed embeddings,
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Figure 1: Main model architecture

the model is generalizable because each word refers
to dense low-dimensional real-valued vectors in the
space, so that tokens with approximated semantic
and syntactic properties will have similar vector rep-
resentations. However, learning high-quality word
vectors can be challenging. Ideally, they should rep-
resent successfully both complex characteristics of
word uses and how these uses change according to
their linguistic context. Hence, word embeddings
have attracted a lot of consideration from many re-
searchers (Mikolov et al., 2013; Lai et al., 2016).
Over the last years, different tools, such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington et
al., 2014) have been widely used in the NLP field.
In order to reach high-quality of word embeddings,
researchers have recently introduced different tech-
niques to generate various embeddings for the same
word depending on its context (Devlin et al., 2018;



Peters et al., 2018).
However, using a word embedding alone as the
smallest feature representation unit may result in
some loss of important information. For morpho-
logically rich languages, such as Arabic, we need to
catch all morphological and orthographic patterns.
As the word embedding encodes semantic and syn-
tactic word relationships, character-level representa-
tions model important morphological and shape in-
formation. Inspired by this integration, we acquire
the word representations from BERT word embed-
dings and two different character-level representa-
tions extracted from a CNN and LSTM.

3.1.1 Word embedding layer

In distributed embeddings, words refer to a vec-
tor in a continuous space to capture syntactic and
semantic relations among them. In this work, we
use BERT (Devlin et al., 2018) as distributed word
embeddings. BERT was published by researchers at
Google AI Language in late 2018. Its full name is
Bidirectional Encoder Representations from Trans-
formers. It represents a language model represen-
tation based on self-attention blocks. The main in-
novation of this model is the pre-training approach,
which determines word and sentence-level repre-
sentations based on masked-language modeling and
next sentence prediction training. BERT is pre-
trained in various languages using existing unla-
beled data. The pre-trained deep bidirectional model
with one output layer has become a state-of-the-art
in many NLP applications such as multi-genre nat-
ural language inference, named entity recognition
and question answering. The idea is to have a com-
mon architecture adequate for many NLP applica-
tions and a pre-trained model that decreases the need
for labeled data and boost the performance for dif-
ferent downstream NLP tasks.
To obtain the pre-trained contextual word embed-
ding for Arabic from BERT model, we make use
of a publicly available pre-trained resource for re-
search purposes: AraBERT1 (Antoun et al., 2020),
with a dimension of 768 and trained on 70M sen-
tences with 3B words of Arabic text. AraBERT uses
the same Google’s BERT architechture and BERT-

1https://huggingface.co/aubmindlab/
bert-base-arabertv01

Base2 configuration with 768 hidden layers, 12 lay-
ers of transformer encoders and 12 attention heads.
For each token, a contextual word embedding is gen-
erated by averaging the corresponding word, sub-
word and position embeddings in the last four lay-
ers.

3.1.2 Character embedding layer
In addition to word embeddings, character-level

embeddings are also used to represent input words.
It is used to handle OOV words that are not present
in the trained word vectors. Especially for the
Arabic language which is rich in morphology
and syntax, character-level embeddings help to
efficiently extract morphological patterns of each
token. We use two different neural networks, the
CNN and LSTM, to extract the character-level
patterns.

Character-level CNN model
Among deep learning techniques, the CNN is a
well-known architecture that is widely used to
capture local information. CNNs, which were origi-
nally used for image processing (Krizhevsky et al.,
2012), are now also used to capture character-level
information for various NLP tasks. The authors in
(Labeau et al., 2015) and (Santos and Guimaraes,
2015) successfully studied the use of CNNs to
model character-level features in POS-tagging and
NER tasks, respectively. The writer in (Collobert et
al., 2011) also used CNNs to improve the semantic
role labeling task. The authors in (Kim et al., 2016)
proposed an interesting CharCNN model, which is
a character-aware neural language model that learns
character-based word representations using CNNs.
In this approach, we also investigate the use of the
CNN architecture to represent each character in
the input token by a character vector. First, each
token is mapped to a suitable representation using
its character embeddings. This character embedding
vectors are then passed through a convolutional
layer using multiple filters to detect various features.
Formally, for an input token W with T characters
{ w1, w2, ..., wT } , matrix Ω ∈ Rdch∗T is learned to
map the token into character embeddings, where dch
is the dimension of the character representations.

2More details about the transformer architecture can be
found in (Vaswani et al., 2017)



The convolution layer has as input the sequence of
character embeddings { ω1, ω2, ..., ωT } . Then, a
convolution operation is used between Ω and filter
H ∈ Rdch∗w of width h. After that, we add a bias
and apply the tanh function to add non-linearity to
acquire the feature map f ∈ RT :

fi = tanh(< Ωi:i+h−1, H > +b) (1)

where< Ωi:i+h−1, H > denotes the Frobenius inner
product and b represents the bias term.
Finally , a max-pooling operation (Eq 2) is applied
to learn a single feature for all feature maps.

QW
H = maxifi (2)

where Qw
H represents the character-level embedding

of a token W produced by filter H to capture the
local information.

Character-level LSTM model
LSTM models are also used to extract character-
level patterns. LSTM is a well-recognized scheme
of learning long-term dependencies. The typical
LSTM unit employs a memory cell controlled by a
forget gate that determines which previous memory
should be scaled into the next time-step. Similarly,
the new input to memory cells is passed through an
input gate.
Formally, the implementation of the LSTM memory
unit is described as follows:

ft = σ(Wf .[xt, ht−1] + bf ) (3)

it = σ(Wi.[xt, ht−1] + bi) (4)

c̃t = tanh(Wc.[xt, ht−1] + bc) (5)

ct = ft ⊙ ct−1 + it ⊙ c̃t (6)

ot = σ(Wo.[xt, ht−1] + bo) (7)

ht = ot ⊙ tanh(Ct) (8)

where σ is the logistic sigmoid function, ⊙ repre-
sents the element-wise multiplication, f , i, o and
c are respectively the forget gate, the input gate,
the output gate and the cell vector, xt represents
the input vector at the tth time-step, ht is the
hidden layer state vector that saves all the important
information at the tth time-increment, Wf , Wi, Wc

and Wo denote the weight matrices of the various
gates, and bf , bi, bc and bo represent the bias vector.

3.2 Context encoder layer: Bi-LSTM/Bi-GRU

The context layer aims to get the local dependencies
using neighboring words for every word. The local
context is crucial for effectively predicting labels,
since there could exist strong relationships among
neighboring tokens in a sentence. Therefore, it is
important to model the local context information for
each word. In the NER task, it is common to use the
RNN as a context encoder model. It treats the input
sequence in order, where shuffling or reversing the
time-steps influences the extracted representations
from the input sequence. The longer the input se-
quence, the less precise the RNN becomes because
it is difficult for the network to remember the output
of the time steps far away from the previous (Goyal
et al., 2018). This issue is named the vanishing gra-
dient problem. LSTM and GRU are variations of the
RNN that help in dealing with the vanishing gradi-
ent issue and can learn long dependency input. In
the NER task, both previous and future information
is helpful for prediction. For that, we use the Bi-
LSTM and Bi-GRU networks as a context encoder
layer after obtaining word embeddings from the con-
catenation (Eq.9) BERT model, CNN as well as the
LSTM-based character embeddings Bemb, CN emb

and CLemb, respectively.

Xemb
t = Bemb

t ⊕ CN emb
t ⊕ CLemb

t (9)

where Bemb
t is is the embedding learned by BERT,

CN emb
t is the CNN-based character embedding,

CLemb
t represents the LSTM-based character em-

bedding, and Xemb
t is the vector representation for

the tth word of the input sentence.

3.2.1 Bi-LSTM
In addition to learning character embedding, we

use LSTM, which is formally explained in section
3.1.2 also to learn the contextual features of a se-
quence of words. To better represent the current
word information, it is beneficial to obtain both prior
and posterior contexts. In our model, we use Bi-
LSTM to effectively predict the current label infor-
mation. As input, Bi-LSTM takes the vector repre-
sentation of each word Xemb

t . The basic idea is to
present the sequence from left to right using a for-
ward layer (Eq.10) and to compute a representation
of the same sequence in reverse via a backward layer



(Eq.11). These two different networks use various
parameters to learn privious and future patterns. The
left and right context representations are then con-
catenated to form the final output (Eq.12)

−→
ht = f(

−−→
ht−1, [X

emb
t ]) (10)

←−
ht = f(

←−−
ht+1, [X

emb
t ]) (11)

ht =
−→
ht ⊕

←−
ht (12)

where f(.) represents the unidirectional LSTM cell,
←−
ht and

−→
ht represent respectively the hidden states of

the backward LSTM cell and the forward cell, and t
is the index of the encoding steps.

3.2.2 Bi-GRU
The GRU was proposed by (Cho et al., 2014).

Similarly to the LSTM cells, the GRU was modeled
to adaptively update or reset its memory content by
using reset and update gates which are similar to the
forget and input gates of the LSTM unit. The update
gate decides what information to use as input at the
next time step, whereas the reset gate uses the pre-
vious time step output to decide which information
should be removed and which information is useful
for the current time step input. The update gate, the
reset gate, and the hidden state ht at time step t are
updated utilizing the equations described below.

ut = σ(Zu.[xt, ht−1] + bu) (13)

rt = σ(Zr.[xt, ht−1] + br) (14)

h̃t = tanh(Z.[xt, ht−1.rt] + b) (15)

ht = (1− ut).ht−1 + ut.h̃t (16)

where σ denotes the logistic sigmoid function, u, r
and h̃ respectively represent the update gate, the re-
set gate and the cell state, xt is the input vector at
time t, ht represents the hidden layer state vector
at time t, Zu, Zr and Z denote the weight matrices
of the different gates and the cell state, respectively,
and bu, br and b represent the bias vector. In this
work, we use a Bi-GRU to process the input sen-
tence by a forward layer from left to right (Eq.17)
and from the other side by a backward layer (Eq.18).
Then, the forward layer hidden state and the back-
ward layer hidden state are combined to represent
the final hidden state (Eq.19).

−→
ht = g(

−−→
ht−1, [X

emb
t ]) (17)

←−
ht = g(

←−−
ht+1, [X

emb
t ]) (18)

ht =
−→
ht ⊕

←−
ht (19)

where g(.) represents unidirectional GRU unit,
←−
ht

and
−→
ht respectively denote the hidden states of the

backward GRU unit and forward unit, and t is the
index of the encoding steps.

3.3 Tag encoder layer: CRF layer
For sequence tagging tasks, it is beneficial to take
into consideration the relationship between tags in
neighborhoods; and for a given input sentence, it
is important to jointly decode the label chain that
yields the best resulting label sequence. In NER
task with the IOB annotation, there is a strong de-
pendency between labels; e.g., I-PER cannot fol-
low I-ORG. Therefore, modeling the label correla-
tions is important for the NER task (Ma and Hovy,
2016; Liu et al., 2018). Following (Ma and Hovy,
2016) and (Huang et al., 2015), we incorporate a
CRF (Lafferty et al., 2001) layer upon the context
layer to jointly capture the label correlations.
Formally, for a given input word sequence X =
(x1, x2, ...xn) with a sequence of annotations Y =
(y1, y2, ...yn), we denote Ω as the scoring matrix re-
sulting from the context layer. The size of matrix
Ω is n*m, where n and m denote the length of the
sentence and the number of different labels, respec-
tively. Ωi,j is the score of the jth label of the ith

word in the input sentence. We also use Y(X) to de-
fine the set of possible label sequences for X.
The score of a given sentence is determined through
Eq.20:

S(X, y) =
∑n

i=0 ψyi,yi+1 +
∑n

i=1Ωi,yi (20)

where ψ denotes the matrix of transition scores.
The transition score matrix values are learned during
training. After that, a softmax function is applied to
regularize the conditional probability of the output
path y:

P (y|X) = expS(X,y)∑
ỹ∈Y(X)

expS(X,ỹ) (21)

During the training step, the aim is to maximize
the following log-probability of the right label se-
quence:

log(P (y|X)) = S(X, y)− log(
∑

ỹ exp
S (X,ỹ))

(22)



For the evaluation step, we aim to retrieve the most
probable output label sequence y∗ by maximizing
the score function:

y∗ = argmax
ỹ∈Y(X)

S(X, ỹ) (23)

Finally, we employ the Viterbi (Forney, 1973) algo-
rithm to train the CRF layer and decode the best se-
quence y∗.

4 Training mechanism

4.1 Dataset description
To prove the effectiveness of our Arabic NER sys-
tem, we conduct extensive experiments using the
ANERCorp3 which was developed by Benajiba (Be-
najiba et al., 2007) from diverse online resources
and which is freely available for research purposes.
It has 4,901 sentences with 150,286 tokens of arti-
cles from Modern Standard Arabic. The ANERCorp
dataset is manually annotated where each word was
tagged with one of the following tags: person, lo-
cation, company, and others. ANERCorp is corpus
that has two corpora, namely training and testing
corpora.

4.2 Evaluation metrics
In order to evaluate the efficiency of our models, the
standard measures for NER precision (P), recall (R),
and F1-Score (F) are computed.
The precision measure represents the percentage of
name entities found by the system and which are
correct. It can be computed as:

P =
NumberOfCorrectNamedEntities

NumberOfNamedEntitiesExtracted
(24)

On the other hand, the recall measure represents the
percentage of name entities that the system extracted
correctly out of the overall number of named entities
existing in the corpus, and it can be expressed as:

R =
NumberOfCorrectNamedEntities

TotalNumberOfNamedEntities
(25)

Finally, the F1-score is the most commonly used and
is computed based on the precision and recall. This

3https://camel.abudhabi.nyu.edu/
anercorp/

is defined as:

F1− score = 2X
P ∗R
P +R

(26)

4.3 Hyper-parameter settings
Our neural network model is implemented using
Keras environment and TensorFLOW API. A word
vector embedding represents the input of the system.
We obtain the word vector using the concatenation
of the pre-trained BERT word vector of dimension
768, CNN and LSTM-based character level repre-
sentations where each of them is of dimension 20.
The training is performed using the backpropaga-
tion algorithm to update the parameters of all models
during the training process. We choose the Adam al-
gorithm (Kingma and Ba, 2014) and we set a learn-
ing rate of value 1e-5. Our model uses two layers
of the Bi-LSTM and Bi-GRU networks with hidden
layer nodes of dimension 512. For the over-fitting
problem, a 20% dropout is regarded as an additional
measure to control the input of the neural model and
alleviate the over-fitting issue very well. In each it-
eration, we split the entire training data into batches
and pass one batch at a time. In our experiments, we
train our model with a batch size of 64 for only three
epochs.

5 Experimental results and discussions

In this section, we present the experimental results
obtained by using different architectures based on
two RNN variants, namely the Bi-LSTM and the
Bi-GRU applied on ANERCorp dataset. We run
three parts of experiments: The first part focuses
on the selection of the best architecture giving the
highest performance. In the second part, we discuss
the obtained results, while the third part of the ex-
periments presents a comparison between the best-
selected architecture and the best previous state-of-
the-art methods.

5.1 Results
To explore the performance of our proposed mod-
els and show the effect of different architectures.
We have conducted a series of comparative exper-
iments. We have examined five different word em-
bedding choices: Randomly initialized Word Em-
beddings(RWE), BERT word embeddings, two dif-
ferent types of character embeddings based on the



CNN and LSTM and CNN-LSTM-BERT (CLB)
combinatorial feature embeddings. All these word
embeddings are tested in combination first with BLC
and then with BGC models. Tables 1 and 2 show
the obtained results.’Exp’, ’P’, ’R’, and ’F1’ denote
experiment, precision, recall and F1-score, respec-
tively.

Exp Model R P F1
1 RWE-BLC 85.40 84.91 85.15
2 CNN-BLC 90.62 90.43 90.52
3 LSTM-BLC 90.50 90.30 90.39
4 BERT-BLC 92.33 92.90 92.61
5 CLB-BLC 93.20 93.50 93.34

Table 1: Results obtained based on Bi-LSTM.

Exp Model R P F1
1 RWE-BGC 85.69 85.09 85.38
2 CNN-BGC 90.97 90.75 90.85
3 LSTM-BGC 90.80 90.57 90.68
4 BERT-BGC 92.58 93.10 92.83
5 CLB-BGC 93.60 93.77 93.68

Table 2: Results obtained based on Bi-GRU.

Related to the experimental results presented in Ta-
bles 1 and 2, we can observe that the combination of
BGC and CLB combinatorial word embeddings ex-
hibits the highest performance and outperforms the
model based on BLC which reaches 93.20% pre-
cision, 93.50% recall and a 93.34 F1-score% by
achieving 93.77% precision, 93.60% recall and a
93.68% F1-score. In table 1 and 2, In five different
experiments, the obtained results show that the Bi-
GRU performs better than Bi-LSTM by about 0.34%
in the F1-score with the CLB combinatorial feature
embeddings.

5.2 Effects of different word embeddings
To analyze the effects of different types of word em-
beddings, we conduct experiments using the BLC
and the BGC with five different combinations of em-
beddings. The results are presented in Tables 1 and
2. In experiment 1, the model applies only the RWE.
In experiments 2 and 3, the models use embeddings
that combine one type of character-level embedding,
the CNN and LSTM, respectively. In experiment

4, the models use pre-trained BERT word embed-
dings whereas in experiments 5, the models use a
combinatorial feature based on the CNN, LSTM
and BERT. Experiment 1 shows that the RWEs ex-
hibit the lowest performance. The results of ex-
periments 2 and 3 significantly outperform those
of experiment 1, indicating that character-level em-
bedding is useful for handling OOV words in Ara-
bic NER tasks. Additionally, in experiments 2 and
3, the CNN model outperforms the LSTM model
in extracting character-level features by 0.12% and
0.17% in the F1-score using BLC and BGC mod-
els, respectively. In experiment 4, we investigat the
effect of using pre-trained BERT word embeddings.
It demonstrates that pre-trained BERT embeddings
have the most positive impact on the performance
by achieving 92.33% and 92.58% F1-score using
the BLC and BGC, respectively. In experiment 5,
the proposed models utilizing all three types of em-
bedding (CNN,LSTM and BERT ) for word repre-
sentation exhibit the highest performance achieving
an F1-score of 93.34% 93.68% F1-score using BLC
and BGC architectures, respectively. This indicates
that in Arabic NER, the use of character-level based
word representations and Arabic pre-trained word
embeddings are effective for handling OOV words
and effciently capturing semantic and syntactic word
relationships.

5.3 Performance comparison with
state-of-the-art methods

In this part of these experiments, we compare the
performance of our proposed models with the mod-
els used in previous studies on ANERCorp. Table
3 presents the results of three competitive Arabic
NER models from the studies of (Alsaaran and Alra-
biah, 2021)(BERT-GRU), (Ali et al., 2019) (Multi-
Attention) and (El Bazi and Laachfoubi, 2019) (CW-
Bi-LSTM-CRF) evaluated on entity-level matching.

The authors in (Alsaaran and Alrabiah, 2021)
introduced a novel Arabic NER model for Arabic
based on the BERT and the Bi-GRU. This model
achieves a 92.28 % F1-score on ANERCorp. In
addition to word-level embeddings, the writers in
(Ali et al., 2019) adopted character-level embed-
dings and combined them via an embedding-level
attention mechanism followed by Bi-LSTM and a
self-attention layer. This model yielded an F1-



Model R P F1
BERT-BGRU 92.40 92.20 92.28

Multi-Attention 90.62 90.43 90.52
CW-Bi-LSTM-CRF - - 90,60

CLB-BLC (our) 93.20 93.50 93.34
CLB-BGC (our) 93.60 93.77 93.68

Table 3: Comparison between our best models and three
Arabic NER systems on ANERCorp dataset.

score of 91.31% on ANERCorp. A Bi-LSTM-
CRF based neural network model was introduced by
(El Bazi and Laachfoubi, 2019). The proposed sys-
tem got two sources of information about words as
input: pre-trained word embeddings namely Skip-
Gram, CBOW, GLOVE, FastText and Hellinger
PCA and character-based representations. This ap-
proach yielded an F1-score of 90.60%˙
Table 3 presents the comparison between our mod-
els and some state-of-the-art approaches. We out-
perform the best Arabic NER model (Alsaaran and
Alrabiah, 2021) on ANERCorp by about 1.4 points.
As far as we know, we are the first to use two types
of character-level embedding based on the CNN and
LSTM combined with BERT word embeddings as
the main feature block for the Arabic NER task. Us-
ing these three types of word embeddings together
allows the model to capture both important morpho-
logical and orthographic patterns as well as the se-
mantic and syntactic word relationships.

6 Conclusion

In this paper, we have presented a technically simple
neural network architecture using variant deep neu-
ral network architectures and a combinatorial feature
embedding based on the CNN, LSTM and BERT.
Several deep learning architectures have been inves-
tigated and evaluated on ANERCorp dataset. The
experimental results have shown that our CLB-BLC
and CLB-BGC models achieve superior outcomes
over the existing deep learning models in Arabic
NER with a high F-score of 93.34% and 93.68% re-
spectively. Also, the evaluation has clearly demon-
strated that:

• The CNN model outperforms the LSTM model
in extracting character- level features.

• The Bi-GRU model performs better in mod-
eling long-term dependencies for Arabic NER
than the Bi-LSTM model. In our experiments,
the Bi-GRU architecture outperforms the Bi-
LSTM architecture by about 0.34% in the F1-
score.

• The proposed models utilizing the combina-
torial feature embedding based on the CNN,
LSTM and BERT exhibit the highest perfor-
mance achieving an F1-score of 93.34% and
93.68% F1-score using the BLC and BGC ar-
chitectures, respectively.

One of the potential directions for future work will
be to apply an embedding attention layers on top of
the word and character level representations to dy-
namically determine the information that must be
used to best represents the given token and to extend
this work to solve the NER task for other languages.
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Benedı́ruiz. 2007. Anersys: An arabic named entity
recognition system based on maximum entropy. In
International Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 143–153.
Springer.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
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