
A Model-Theoretic Formalization of Natural Language Inference Using
Neural Network and Tableau Method

Ayahito Saji1, Yoshihide Kato2, Shigeki Matsubara1,2

1Graduate School of Informatics, Nagoya University
2Information and Communications, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
saji.ayahito.y7@s.mail.nagoya-u.ac.jp

Abstract

Saji et al. (2021) integrated a neural-based NLI
model and a symbolic one into a framework to
get the best of both worlds. This framework
is based on a tableau method, which is a proof
system for formal logic; however, it has a re-
maining issue that its theoretical limitations
have not been clarified. To solve this issue,
this paper formalizes the framework model-
theoretically. On the basis of the formalization,
we demonstrate that a certain kind of sound-
ness holds for this framework, while the com-
pleteness does not.

1 Introduction

The natural language inference (NLI) (Dagan et al.,
2013) is the task of identifying the inferential re-
lation between a text pair: a premise and hypothe-
sis. If a hypothesis can be inferred from a premise
using logical and commonsense knowledge, it is
judged as entailment. If a premise and hypothe-
sis are incompatible, it is judged as contradiction,
and if neither of these cases hold, it is judged as
neutral. NLI systems are expected to be applied
to a wide range of fields, e.g., question answering,
information retrieval, and text summarization.

In recent years, neural-based approaches (Parikh
et al., 2016; Chen et al., 2017; Devlin et al., 2019;
Lan et al., 2019; Tai et al., 2020; Wang et al., 2021)
have achieved high accuracy in experiments with
many NLI datasets, e.g., the SNLI corpus (Bowman
et al., 2015), MultiNLI (MNLI) corpus (Williams
et al., 2018), Adversarial NLI (ANLI) dataset (Nie
et al., 2020), and QNLI dataset (Wang et al., 2018).
However, neural-based models have the limitation
that they cannot explain the reasoning processes
by which inferential relations are derived. Such
models represented a black box, and it is difficult
to analyze what kind of inference was performed.1

Yanaka et al. (2020) proposed a method to evaluate
1One of the exceptions is the NLI system, which gener-

ates explanations by Kumar and Talukdar (2020); however,

whether neural models learn the systematicity of
monotonicity inference in natural language, and
they demonstrated that the generalization ability
of current neural models is limited. Gururangan
et al. (2018) and Tsuchiya (2018) showed that NLI
datasets such as the SNLI corpus and MNLI corpus
have a hidden bias in that only a hypothesis is suf-
ficient to determine inferential relations, and there
is a risk that neural models are simply identifying
inferential relations based on such biases.

From a different perspective, symbolic ap-
proaches to the NLI task have been proposed (Bar-
Haim et al., 2007; MacCartney and Manning, 2007,
2008, 2009; Mineshima et al., 2015; Abzianidze,
2015, 2017; Hu et al., 2020). These approaches
have the advantage that the reasoning process de-
riving the relation is understandable to humans,
unlike neural-based approaches. In addition, sym-
bolic approaches are generally founded on formal
logic or linguistic analyses, which allows us to un-
derstand the reasoning processes. However, these
approaches require inference rules that are created
by humans; thus, it is difficult to handle synonyms,
hypernyms, and hyponyms exhaustively. In addi-
tion, commonsense knowledge, e.g., “when it rains,
the ground gets wet” must be expressed as infer-
ence rules; however, it is unlikely that such rules
can be created exhaustively. Currently, these ap-
proaches have only been tested for the controlled
NLI datasets such as the FraCaS test suite (Cooper
et al., 1996) and SICK dataset (Marelli et al., 2014).

Saji et al. (2021) integrated these two approaches
into a unified framework that can make the infer-
ence process explicit for certain linguistic phenom-
ena while maintaining the applicability of neural-
based approaches to relatively freely created (non-
controlled) datasets. This method is based on the
tableau method, which is one of the proof meth-
ods of formal logic; however, to the best of our

since they are generated by the neural model, the process of
generating explanations is a black box.



knowledge, its theoretical limitations have not been
clarified.

Thus, in this paper, we formalize the method
proposed by Saji et al. model-theoretically to clar-
ify the theoretical limitations of the method. We
demonstrate that a certain kind of soundness holds
for this method, while completeness does not.

2 Natural Language Inference using
Neural Network and Tableau Method

This section provides an overview of the method
proposed by Saji et al. For a premise p ∈ L and
hypothesis h ∈ L,2 the method takes the following
steps:

1. Construct the tableaux to prove entailment
and contradiction relations.

2. Judge the closedness of the tableaux using a
neural-based NLI system.

3. Determine the relation between the premise
and hypothesis based on the constructed
tableaux.

Below, we explain each step.

2.1 Tableaux Construction

The tableau method constructs a tree structure, re-
ferred to as a tableau, for a given set, each element
of which is a pair of a sentence s and truth value
v. Each node in a tableau is labeled with a tuple
e = (s, v, a, o) called an entry. Here, the entry e
represents the constraint that s must take v as its
truth value. a is the flag indicating whether the
tableau rule (described below) has been applied
to e, and o denotes the entry from which e was
derived. The truth value v is either T or F, rep-
resenting true or false, respectively. The flag a is
either 0 or 1, where 0 means that no tableau rule
has been applied and 1 means that some rule has
been applied. The initial tableau consists of entries
for a given pair of natural language sentence and
truth value, with a = 0. Each entry in the initial
tableau is assumed to be derived from itself. That
is, for each entry e in the initial tableau, e is in
the form of (s, v, 0, e). The tableau is created by
repeatedly applying tableau rules to the entries. By
applying a tableau rule to an entry, the constraint
expressed by the entry is decomposed into several
constraints. The decomposed constraints are added

2L is the set of natural language sentences.

to the tableau as new entries. This decomposition
makes the reasoning process explicit. In the fol-
lowing, when a tableau t′ is derived by applying a

tableau rule r ∈ R to a tableau t, we write t
R
� t′,

and we refer to a tableau t which has no tableau t′

such that t
R
� t′ as a complete tableau.

Branches in a tableau indicate that there are mul-
tiple cases for possible valuation. A complete
tableau to prove entailment relation whose ini-
tial tableau consists of {e1 = (p,T, 0, e1), e2 =
(h,F, 0, e2)} is referred to as an entailment tableau
and that for contradiction whose initial tableau con-
sists of {e1 = (p,T, 0, e1), e2 = (h,T, 0, e2)} is
referred to as a contradiction tableau.

A tableau rule takes the following form:3

r = (c1,1∧· · ·∧c1,n1)∨· · ·∨(cm,1∧· · ·∧cm,nm),

where c1,1, . . . , c1,n1 , . . . , cm,1, . . . , cm,nm are
functions that take (s, v, 0, o) as input and return
(s′, v′, 0, o). Here, if ci,ji(e) is defined for all ci,ji a
tableau rule r is applicable to e. If a tableau has an
entry e to which r is applicable, new m branches
〈c1,1(e),· · ·, c1,n1(e)〉,· · ·, 〈cm,1(e),· · ·, cm,nm(e)〉
are added as their children to all leaves dominated
by the entry e. A tableau rule converts the
constraint expressed in the source entry into the
equivalent one.4 There is no need to apply an
operation to the entry e to which the tableau rule
has been applied, because the constraint is already
expressed by the entries derived from the entry
e. The flag a in an entry (s, v, a, o) controls the
application of such operations and is changed to 1
when a tableau rule is applied. An entry (s, v, 1, o)
is neither applied any tableau rules nor used in
judging the closedness of the tableau as described
below. Figure 1 (left) shows an entailment tableau
for the following example:

Premise Either Smith or Anderson signed the con-
tract.

Hypotheses If Smith did not sign the contract An-
derson made an agreement.

Label Entailment

The initial tableau of this example consists of
e1 = (Either Smith or Anderson signed the con-
tract, T, 0, e1) and e2 = (If Smith did not sign

3For a specific implementation of the tableau rules, see
(Saji et al., 2021).

4Although tableau rules that derive weak constraints are
also possible, such rules are not considered in the method
proposed by Saji et al.



: (Either Smith or Anderson signed the contract, T, 1, )

: (If Smith did not sign the contract Anderson made an agreement, F, 1, )

: (Smith did not sign the contract, T, 1, )

: (Anderson made an agreement, F, 0, )

: (Smith signed the contract, F, 0, )

: (Smith signed the contract, T, 0, )
: (Anderson signed the contract, T, 0, )

× ×

from and 
from and 

(C1 C2 … or   Cm V, T)

: (C1 V, T) : (Cm V , T)

(2.c) Rule for disjunction

(2.b) Rule for negation

(not V, T)

: (V, F)

: (C2 V, T) …

(2.a) Rule for conditional

(if V1 V2, F)

: (V1, T)

: (V2, F)

(1) Example of entailment tableau (2) Examples of tableau rules

Figure 1: Example of entailment tableau in Saji et al.’s method

the contract Anderson made an agreement, F, 0,
e2). First, applying the rule (2.a) of Figure 1 to e2
adds two new entries at the end of the path (the
tableau leaf): e3 = (Smith did not sign the contract,
T, 0, e2) and e4 = (Anderson made an agreement,
F, 0, e2), and the flag of e2 is changed to 1. Sec-
ond, applying the rule (2.b) to e3 adds a new entry:
e5 = (Smith signed the contract, F, 0, e2) and the
flag of e3 is changed. Finally, applying the rule
(2.c) to e1 adds two new entries: e6 = (Smith
signed the contract, T, 0, e1) and e7 = (Anderson
signed the contract, T, 0, e1), and the flag of e1 is
changed.

2.2 The Closedness of Tableaux
Saji et al. defined a branch b is closed, if and
only if two entries e1 = (s1, v1, 0, o1) and e2 =
(s2, v2, 0, o2) (o1 6= o2) on b satisfy one of the
following three conditions, which we refer to as
closedness conditions:

1. v1 = T ∧ v2 = F ∧ s1 = s2

2. v1 = T ∧ v2 = T ∧NLI(s1, s2) = C

3. v1 = T ∧ v2 = F ∧NLI(s1, s2) = E

Here, NLI(s1, s2) is any NLI system that takes
premise s1 ∈ L and hypotheses s2 ∈ L as inputs
and returns one of the following classes: entail-
ment (E), neutral (N), or contradiction (C). The first
condition is similar to that of conventional tableau
method, and the other two conditions are based
on the NLI system. If all branches in a tableau are
closed, the tableau is closed. The condition o1 6= o2
excludes entries derived from only a premise or a
hypothesis from the judging of the closedness; how-
ever, this is not a problem if a premise or hypothesis
is neither tautology nor contradictory sentence.

Entailment Contradiction
Output

tableau tableau
Closed Not closed Entailment

Not closed Closed Contradiction
Not closed Not closed Neutral

Closed Closed Error

Table 1: Correspondence between closedness of
tableaux and the inferential relation

As an example, let us consider the
tableau shown in Figure 1 (left) and assume
that NLI

(
sen(e7), sen(e4)

)
= E.5 The

tableau has two branches. The left branch
〈e1, e2, e3, e4, e5, e6〉 is closed because e5 and e6
satisfy the first closedness condition. The right
branch 〈e1, e2, e3, e4, e5, e7〉 is also closed because
e4 and e7 satisfy the third closedness condition.

2.3 Determining the Inferential Relation
The inferential relation between a premise and a
hypothesis is predicted based on the closedness of
entailment and contradiction tableaux. This is iden-
tical to that of Abzianidze (2015) and summarized
in Table 1.6

3 Model-Theoretic Formalization

3.1 Model
To discuss the method proposed by Saji et al. for-
mally, we first define a model-theoretic interpre-
tation of sentences. We then characterize tableau
rules and NLI systems based on such interpretation,
and define some properties of their proof system.

5Here, sen
(
(s, v, a, o)

)
= s.

6The “error” class is for an uninterpretable situation where
both entailment and contradiction relations hold.



A model is defined as follows:

Definition 1 (Model). A model is a function from
L to {T,F}. LetM be the set of all models. For a
set of models M ⊆M, we define M(s) = {m ∈
M | m(s) = T}.

Intuitively, a set of models M(s) can be con-
sidered a set of situations where s is true. In the
following, we define what NLI systems and tableau
rules are consistent with a given set of models M ,7

and we clarify the theoretical limitations of the
tableau methods of Saji et al. under the condition
where the NLI system and tableau rules are consis-
tent with the model set.

Definition 2. An NLI system is said to be consis-
tent with a model set M if and only if all of the
following conditions hold.

• M(p) ⊆M(h)⇔ NLI(p, h) = E

• ¬(M(p) ⊆ M(h)) ∧ ¬(M(p) ∩ M(h) =
∅)⇔ NLI(p, h) = N

• M(p) ∩M(h) = ∅ ⇔ NLI(p, h) = C

In this definition, the entailment relation corre-
sponds to the inclusion relation of the model set,
and the contradiction relation as the relation that
the model sets are mutually disjoint.

In the following, we characterize the tableau
methods based on the model-theoretic interpreta-
tion. In preparation, we define the model set for
an entry, a branch of the tableau and a tableau by
extending M(s).

Definition 3 (Model set for an entry). For a tableau
entry e = (s, v, a, o), we define M(e) as follows:

M(e) =

{
M(s) (v = T)

M −M(s) (v = F)

Definition 4 (Model set for a branch). For a branch
b of a tableau, we define M(b) as follows:

M(b) = ∩e∈bM(e).

Definition 5 (Model set for a tableau). Let B be a
set of all branches in a tableau t. We define M(t)
as follows:

M(t) = ∪b∈BM(b).
7The reason why we consider a subset M of M is that M

contains logically unnatural models such as models that return
T for every natural language sentence. We assume that the
set of logically natural models is given as M . No conditions
are required for M ; thus, the following discussion is valid no
matter what kind of M is.

Definition 6. Let r = (c1,1 ∧ · · · ∧ c1,n1) ∨ · · · ∨
(cm,1 ∧ · · · ∧ c1,nm), E be the set of all entries, and
Er = {e ∈ E | r is applicable to e}. A tableau
rule r is said to be consistent with a model set M
if and only if the following condition is satisfied
for all e ∈ Er:

M(e) =

(
M
(
c1,1(e)

)
∩ · · · ∩ M

(
c1,n1(e)

))
∪

· · · ∪
(
M
(
cm,1(e)

)
∩ · · · ∩M

(
c1,nm(e)

))
.

In this equation, the left-hand side corresponds
to the constraint of the entry e. The right-hand side
represents the constraint derived by applying the
tableau rule r to the entry e.

In addition, a tableau rule set R is said to be
consistent with M if and only if all r ∈ R are
consistent with M .

3.2 Soundness and Completeness

The main components of the method proposed by
Saji et al. are a tableau rule set R and NLI system
NLI . We call a pair (R,NLI) a proof system and
define the soundness and completeness of the proof
system based on the model-theoretic interpretation.
Furthermore, we prove any proof systems are sound
and give a counterexample for the completeness.
The soundness defined in this paper is the prop-
erty that if the entailment (contradiction) tableau
is closed, then the model sets for the premises and
hypotheses are in an inclusion (mutually disjoint)
relation. The completeness is the converse of the
soundness. We define the soundness of a proof
system as follows:

Definition 7 (Soundness). Let M be a model set,
R be a set of tableau rules consistent with M , and
NLI be an NLI system consistent with M . We
say that the proof system (R,NLI) is sound with
respect to M if and only if the following condition
holds for all premise p and hypothesis h:

• If the entailment tableau constructed by R is
closed by NLI , then M(p) ⊆M(h).

• If the contradiction tableau constructed by R
is closed by NLI , then M(p) ∩M(h) = ∅.

On the other hand, the completeness is defined
as follows:

Definition 8 (Completeness). Let M be a model
set, R be a set of tableau rules consistent with M ,
and NLI be an NLI system consistent with M .



We say that the proof system (R,NLI) is com-
plete with respect to M if and only if the following
condition holds for all premise p and hypothesis h:

• If M(p) ⊆M(h), then the entailment tableau
constructed by R is closed by NLI .

• If M(p) ∩M(h) = ∅, then the contradiction
tableau constructed by R is closed by NLI .

3.2.1 Proof of Soundness
In this section, we prove the following theorem:

Theorem 1 (Soundness Theorem). Let M be a
model set. Any proof systems (R,NLI) consistent
with M are sound with respect to M .

First, we introduce two lemmas to prove the
theorem.

Lemma 2. Let M be a model set and R be a
tableau rule set consistent with M . The follow-
ing equation holds for any tableaux t and t′ such

that t
R
� t′:

M(t) = M(t′).

From Definition 6, Lemma 2 is trivial.

Lemma 3. Let t and t′ be tableaux such that t
R
�
∗
t′.

If R is consistent with M , M(t) = M(t′).

Lemma 3 is trivial from Lemma 2.
The proof of Theorem 1 is as follows:

Proof. Assume that the entailment tableau tent con-
structed by R is closed by NLI . This implies
that, two entries (s1, v1, 0, o1) and (s2, v2, 0, o2)
(o1 6= o2) satisfy one of the closedness conditions
in all branches b of tent.

• If the first closedness condition is satis-
fied, v1 = T ∧ v2 = F ∧ s1 = s2.
Thus, from Definition 3, M(e1) ∩M(e2) =
M
(
(s1,T, 0, o1)

)
∩ M

(
(s1,F, 0, o2)

)
=

M(s1) ∩
(
M −M(s1)

)
= ∅.

• If the second closedness condition is sat-
isfied, we obtain v1 = T ∧ v2 = T ∧
NLI(s1, s2) = C. NLI is consistent
with M ; thus, from Definition 2, M(s1) ∩
M(s2) = ∅. Therefore, from Definition
3, M(s1) ∩ M(s2) = M

(
(s1,T, 0, o1)

)
∩

M
(
(s2,T, 0, o2)

)
= M(e1) ∩M(e2) = ∅.

• If the third closedness condition is satisfied,
we obtain v1 = T∧ v2 = F∧NLI(s1, s2) =
E. NLI is consistent with M ; therefore, from

Definition 2, M(s1) ⊆ M(s2). Thus, from
Definition 3, M(e1) = M(s1), M(e2) =
M − M(s2). Since M(s1) ⊆ M(s2),
M(e1) ∩M(e2) = ∅.

From the above, M(e1) ∩ M(e2) = ∅. Thus,
from Definition 4, M(b) = ∅. Here, M(b) =
∅ for all branches b ∈ tent; thus, from Defi-
nition 5, M(tent) = ∅. Let tinit be the initial

tableau. By tinit
R
�
∗
tent and Lemma 3, M(tinit) =

∅. Since tinit consists of ep = (p,T, 0, ep) and
eh = (h,F, 0, eh), from Definition 4 and 5,
M
(
(p,T, 0, ep)

)
∩ M

(
(h,F, 0, eh)

)
= ∅. Thus,

M
(
(p,T, 0, ep)

)
⊆ M

(
(h,T, 0, eh)

)
. From Defi-

nition 3, M(p) ⊆ M(h). The above satisfies the
first condition of Definition 7. The second condi-
tion (for the contradiction tableau) can be proved
in a similar way.

3.2.2 Counterexample of Completeness
In this section, we present a counterexample such
that a proof system is not complete. Let us consider
the following example:

Premise Smith and Anderson did not go out.

Hypothesis Smith and Anderson were home.

Label Entailment

The entailment tableau shown in Figure 2 is for
the premise and hypothesis. The truth values of
entries e4, e5, e6 and e7 to which the tableau rule
has not yet been applied, are all F. In the closedness
conditions, the truth value of one of the entries
must be T; thus, this entailment tableau cannot
be closed with any NLI . As an example of the
model set M , let us consider the models shown in
Table 2. In this model set M , M(e1) = M(e3) =
M(e4) ∩M(e5) = {m1} and M(e2) = M(e6) ∪
M(e7) = {m2,m3,m4}; thus, these tableau rules
are consistent with M . Note that M(p) ⊆ M(h)
since M(p) = M(h) = {m1}. This means that
the first condition of Definition 8 does not hold.
Thus, the completeness does not hold.

3.3 Example of Complete Proof System

Generally, the completeness does not hold; how-
ever, we can prove that a certain proof system is
complete. In this section, we present an example
of such proof system.

Let M be a model set, NLI be an NLI system
that is consistent with M and R be a tableau rule



: (Smith and Anderson did not go out, T, 1, )

: (Smith and Anderson were home, F, 1, )

: (Smith or Anderson went out, F, 1, )

: (Smith went out, F, 0, )

: (Anderson went out, F, 0, )

: (Smith was home, F, 0, ) : (Anderson was home, F, 0, )

Figure 2: Counterexample of completeness

m1 m2 m3 m4 M

Smith and Anderson did not go out ¬(¬S ∨ ¬A) T F F F {m1}
Smith and Anderson were home S ∧A T F F F {m1}
Smith or Anderson went out ¬S ∨ ¬A F T T T {m2,m3,m4}
Smith went out ¬S F F T T {m3,m4}
Anderson went out ¬A F T F T {m2,m4}
Smith was home S T T F F {m1,m2}
Anderson was home A T F T F {m1,m3}

Table 2: Models for counterexample of completeness

set consistent with M such that for all r ∈ R, the
following conditions hold:8

1. r is in the form of c1,1.

2. If c1,1
(
(s, v, 0, o)

)
is defined, the returned

value is in the form of (s′, v, 0, o).

In this proof system, entailment tableaux con-
structed by R are always closed by NLI if
M(p) ⊆ M(h). The proof of its completeness
is as follows:

Proof. Assume that M(p) ⊆ M(h). Here, let
tinit be the initial tableau constructed from ep =
(p,T, 0, ep) and eh = (h,F, 0, eh). For all tableaux

t such that tinit
R
�
∗
t, the following statements hold:

• t has only one branch.

• t has only two entries whose flag is 0: the one
is in the form of (p′,T, 0, ep) and the other is
in the form of (h′,F, 0, eh).

• M(p) = M(p′)

• M(h) = M(h′)

8We can consider that the tableau rules simply paraphrase
sentences.

The first statement holds from the first condition
about R. The second statement holds from the con-
ditions about R. From the conditions about R, Def-
inition 3 and 6, the last two statements hold. The
entailment tableau tent derived from tinit also satis-

fies the above statements, since tinit
R
�
∗
tent. Because

M(p′) = M(p) ⊆ M(h) = M(h′) and NLI is
consistent with M , NLI(p′, h′) = E. Thus, the
branch of tent satisfies the second closedness con-
dition, that is, tent is closed by NLI . The second
condition (for the contradiction tableau) of the com-
pleteness also can be proved in the similar way.
Thus, this proof system is complete with respect to
M .

4 Conclusion

In this paper, we have formalized the method pro-
posed by Saji et al. based on a model-theoretic
interpretation and have clarified the theoretical lim-
itations of this method. We have proved the sound-
ness theorem and provided an example of complete
proof system. In future work, we will explore what
kind of proof systems are complete.
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