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Abstract

We propose the Video Language Co-
Attention Network (VLCN) – a novel
memory-enhanced model for Video Ques-
tion Answering (VideoQA). Our model com-
bines two original contributions: A multi-
modal fast-learning feature fusion (FLF)
block and a mechanism that uses self-
attended language features to separately
guide neural attention on both static and
dynamic visual features extracted from in-
dividual video frames and short video clips.
When trained from scratch, VLCN achieves
competitive results with the state of the
art on both MSVD-QA and MSRVTT-QA
with 38.06% and 36.01% test accuracies, re-
spectively. Through an ablation study, we
further show that FLF improves general-
ization across different VideoQA datasets
and performance for question types that are
notoriously challenging in current datasets,
such as long questions that require deeper
reasoning as well as questions with rare
answers1.

1 Introduction

Video Question Answering (VideoQA) has emerged
as a challenging task at the intersection of natu-
ral language processing and computer vision. In
contrast to image-based visual question answer-
ing (Lu et al., 2016; Anderson et al., 2018; Yu et al.,
2019), VideoQA takes dynamic visual content (a
video) as input (Xu et al., 2017; Gao et al., 2018;
Li et al., 2019). This poses new challenges given
that generating correct answers requires models
to analyze spatial, appearance-based features of
individual video frames jointly with the temporal,
motion-based dynamics across multiple frames (Zhu
et al., 2017).

However, there still is a semantic gap between the
visual and language channels (Lei et al., 2018; Sun
et al., 2021; Song et al., 2018) that prior work has

∗*Equal contribution.
1Our code is publicly available at the project web-

site https://www.perceptualui.org/publications/
abdessaied22_repl4NLP/

tried to close by leveraging external memory (Kim
et al., 2018, 2019; Fan et al., 2019). While ex-
ternal memory allows models to cache sequential
information and retrieve relevant multimodal con-
tent (Patel et al., 2021), latest models still suffer
from decreased performance, for example on am-
biguous questions that require deeper reasoning
abilities.

Moreover, current deep neural models for
VideoQA are limited in that they only gradually
learn during training. In contrast, human cogni-
tion leverages two different learning systems: a
gradual and a fast-learning system (McClelland
et al., 1995).The interplay between the fast and
gradual duel learning systems is essential for hu-
mans to learn new representations, hence to gen-
eralizing (McClelland et al., 2020b). Current net-
works lack a similar fast-learning mechanism, which
impedes their ability to efficiently reason and gener-
alize to unseen data since the fast learning system
acts as an encoder of new information which is
then transferred to the gradual learning system for
referencing and consolidating (Arani et al., 2021).

To address these limitations, we propose the
Video Language Co-Attention Network (VLCN)
– a novel memory-enhanced model for VideoQA.
VLCN implements a video language co-attention
module that uses self- and guided-attention to align
language features of the question with static and
dynamic visual features extracted from videos. As
such, the module offers complementary informa-
tion that our network attends to, independently
of each other, when visually grounding a ques-
tion. Furthermore, VLCN features a novel mul-
timodal fast-learning fusion (FLF) block that helps
the model to deal with challenging questions that
need deeper reasoning and understanding. Inspired
by the cognitive fast-learning system (McClelland
et al., 2019), we leverage the differentiable neural
computer (DNC) to incorporate an external mem-
ory which the network learns how to use by freeing
and reusing its memory slots.

We seamlessly integrate our novel video language
co-attention module as well as the fast-learning
feature fusion approach in the recent transformer-
based MCAN network (Yu et al., 2019). We show
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that our model achieves competitive results with
the state of the art on two challenging datasets –
MSVD-QA and MSRVTT-QA. Our results further
show that our model performs better on ambiguous
questions and can better reason not only about
questions with rare answers but also longer ques-
tions that require a deeper understanding of both
the question and the visual input. In addition,
we show that FLF facilitates generalization across
different VideoQA datasets via transfer learning.

2 Related Work

Our work is related to previous works on 1) at-
tention mechanisms in VideoQA, and 2) memory-
enhanced networks.

Attention Mechanisms in VideoQA. Neural
attention mechanisms have become the de-facto
standard in machine comprehension tasks (Sood
et al., 2020; Yu et al., 2019; Li et al., 2019). In
VideoQA, attention mechanisms are particularly
important given that the information necessary to
generate correct answers is scattered across frames
– many of which are redundant or even irrelevant to
the question at hand (Patel et al., 2021).

Ye et al. (2017) introduced the attribute-
augmented attention network that learned tempo-
rally attended video representations according to
semantic attributes. Xu et al. (2017) reported new
state-of-the-art performance by applying question-
guided attention over both the appearance and
motion features of individual as well as multiple
video frames. Motivated by the challenge to cap-
ture long-range dependencies, Li et al. (2019) used
a transformer-based co-attention network to exploit
the global dependencies of the text and the tempo-
ral dynamics of the videos. Yang et al. (2020) lever-
aged BERT (Devlin et al., 2018) to obtain richer
contextual feature representations over the ques-
tion. More recently, Seo et al. (2021) proposed a
two-stream multimodal video transformer based ar-
chitecture (CoMVT) that jointly attends over words
in text and visual objects and scenes to learn visual-
dialogue context. Although CoMVT achieves state-
of-the-art results on multiple downstream VideoQA
datasets, it requires a computationally-demanding
pretraning stage on 1.2M instructional videos.

These previous methods have used question fea-
tures to guide attention over either frame or clip-
level visual features, and some applied self and
co-attention to individual frames. Our work, how-
ever, is the first to use self-attention on the question
which then separately guides the attention over both
individual video frames and clips.

Memory-enhanced Networks. In parallel,
other works have focused on augmenting models
with external memory components to improve their
reasoning capabilities particularly over long-range

data that are common in many visiolinguistic tasks,
e.g. images with many objects or videos with a
large number of frames. One of the first methods
introduced a memory component over simple facts
for question answering (Weston and Bordes, 2015).

The introduction of end-to-end trainable models
popularized the use of external memory components
(Sukhbaatar et al., 2015). Driven by the insight that
memory access is similar to neural attention (Collier
and Beel, 2019), other works integrated attention
mechanisms to allow networks to better interact
with their external memory through read and write
operations, such as the Neural Turing Machine
(NTM) (Graves et al., 2014) or the Differential
Neural Computer (DNC) (Graves et al., 2016). The
latter includes a dynamic memory allocation scheme
that enables it to learn how to effectively free and
reuse memory slots.

Several works aimed to leverage the potential
of memory-enhanced networks for VideoQA. Na
et al. (2017) applied memory over the video frames
using multi-layered CNNs read and write networks
to capture richer temporal dynamics of frame-level
sequence information. Xue et al. (2018) obtained
syntax parse trees over questions and then stored
these into memory, allowing their model to per-
form better on more complex questions. Fan et al.
(2019) used one memory component to effectively
learn global context information from appearance
and motion features in combination with another
question-memory to help understand the complex
semantics of questions and highlight queried sub-
jects. Gao et al. (2018) used a co-memory attention
mechanism to generate attention from motion and
appearance cues. More recently, Yin et al. (2020)
achieved new state-of-the-art results on MSVD-QA
(Xu et al., 2017) by using a DNC (Graves et al.,
2016) to encode the textual information of the ques-
tion and the visual information of the video.

While previous works used memory-enhanced
networks to extract linguistic and visual features, we
propose a memory-augmented block adapted from
the DNC to potentially emulate the human-like
fast-learning capabilites (McClelland et al., 2020a)
and use it to fuse multimodal features previously
attended by an encoder-decoder transformer-based
co-attention module instead.

3 Method

We propose the Video Language Co-Attention Net-
work (VLCN) that integrates two original contri-
butions (see Figure 1): First, we propose to use
self- and guided-attention to separately align the
language features with the static and dynamic vi-
sual features extracted from single video frames and
frame sequences (clips). Second, we introduce Fast-
Learning Fusion (FLF) – a novel memory-enhanced
multimodal block that learns a single fused repre-
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Figure 1: Architecture of the proposed Video Language Co-attention Network (VLCN). Our model aligns
three different types of input (language features L, static visual features F and dynamic visual features
C) using self- and guided-attention. Then, it fuses the attended reduced features (l, f and c) with the
help of Fast-Learning Fusion (Fast-Learning Fusion (FLF)) – a novel memory-augmented multimodal
fusion block. AR = Attention Reduction.

sentation of all features (i.e. language, static and
dynamic visual features).

3.1 Feature Representation

In contrast to images, videos consist of multiple
frames that capture temporal object dynamics and
motion features. Combinations of static and dy-
namic visual features have therefore become the
de-facto standard for video representations (Xu
et al., 2017; Le et al., 2020a) in VideoQA. We
adopt the same approach in our Video Language
Co-Attention Network (VLCN).

Visual Features. For each video, we first sample
nv evenly-distributed frames and clips where a clip
is a sequence of 16 consecutive video frames. Then,
we apply a VGG network (Simonyan and Zisser-
man, 2014) pre-trained on ImageNet (Russakovsky
et al., 2015) and a C3D network2 (Ji et al., 2012)
pre-trained on Sports1M (Karpathy et al., 2014)
on these sampled frames and clips, respectively.
The activations of their last dv-dimensional fully-
connected layers are our static and dynamic visual
features.

This results in a set of static frame features F =
[f1, . . . , fnv

] ∈ Rnv×dv and a set of dynamic clip
features C = [c1, . . . , cnv

] ∈ Rnv×dv .

Language Features. Question tokens are repre-
sented using 300-D GloVe embeddings (Pennington

2https://github.com/DavideA/c3d-pytorch

et al., 2014) and encoded with a Long Short-Term
Memory (LSTM) network (Hochreiter and Schmid-
huber, 1997) with dl hidden dimensions. Thus, each
question is represented as a matrix L ∈ Rnl×dl ,
where nl is the number of question tokens.

3.2 Video Language Co-Attention

The intuition behind our overall approach is the way
humans typically answer questions about videos:
first, we read the question. Then, we consider the
visual input, i.e. its static (colours, objects and
shapes) and dynamic (movements and actions) vi-
sual features, to answer it. VLCN uses stacked
video language co-attention layers in an encoder-
decoder fashion (see Figure 1). Given a set of
features, each layer simultaneously computes the
self-attention of the question, frames and clips fea-
tures. Then, the self-attended question features of
the last layer, i.e. L(K), are used to separately guide
the attention over the frames and clip features in
a bottom up manner (Anderson et al., 2018). At
the core of self- and guided-attention sits a multi-
head attention block (Vaswani et al., 2017) that
computes a scaled dot-product of a query q ∈ R1×d

and a set of n keys K ∈ Rn×d, where d is a com-
mon hidden dimension. A softmax function is then
applied to obtain the attention weights A on the
values V ∈ Rn×d following:

A = softmax(
qKT

√
d

)V. (1)
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Similar to (Vaswani et al., 2017), attention weights
A are computed for multiple queries Q ∈ Qn×d

at the same time using Equation (1). The out-
puts of the final video language co-attention layers
L(K) ∈ Rnl×d, F (K) ∈ Rnv×d and C(K) ∈ Rnv×d

encode information about the attention weights
over the question tokens and visual semantics. We
reduce them to get the final attended features
l, f, v ∈ Rd by linearly combining the rows of L(K),
F (K) and C(K), respectively (see Figure 1). Tak-
ing the language features as an example, we first
process L(K) by a multi-layer Feed-Forward Net-
work (FFN) followed by a softmax to obtain the
attention weights that we use to linearly combine
the rows of L(K) as:

a = softmax(FFN(L(K))) ∈ [0, 1]nl , (2)

l =

nl∑

i=1

aiL
(K)[i, :] ∈ Rd. (3)

3.3 Fast-Learning Feature Fusion

We opted to use the DNC as a basis for this ap-
proach given that it is, to our knowledge, the most
capable memory-augmented model to date that
can be trained in an end-to-end fashion (Graves
et al., 2016). In previous works (Graves et al.,
2016; Yin et al., 2020), the DNC was heavily used
to process long input sequences. However, its ca-
pability to treat shorter input sequences remains
unexplored even though it has been argued for by
cognitive science to be capable of emulating the
human fast-learning system proposed in the com-
plementary learning systems theory (McClelland
et al., 1986, 2019). In our work, we leverage it

—for the first time —to fuse our three multi-modal
inputs (i.e. language, static, and dynamic visual
features) within the VideoQA task.

Differential Neural Computer (DNC). The
DNC consists of two major components: A neural
network controller and an external memory. At
each time-step t, the controller receives an input
vector xt and emits an output vector yt. In addition,
it receives a set of R read vectors {rit−1}Ri=1 from
the N ×W memory matrix Mt−1 of the previous
time-step t−1. Both controller inputs and the read
vectors are concatenated to form the final input
vector χt = [xt; r

1
t−1; . . . ; rRt−1]. Theoretically, the

controller can be a network of any type. However, it
is common to use an LSTM network with L hidden
layers. The output vector yt is computed via

yt = Wh[h1
t ; . . . ;hL

t ] + Wr[r1t ; . . . ; rRt ], (4)

where Wh and Wr are learnable weights and ht =
{hi

t}Li=1 are the hidden states of the LSTM con-
troller. These hidden states are used to parame-
terize one write and R read heads to interact with
the N ×W external memory matrix through the

so-called fast-learning connections. Further details
on the DNC can be found in (Graves et al., 2016).

Feature Fusion. First, the reduced language
and visual features l, f and c (see Figure 1) are
projected and summed to get the first interme-
diate output z1. Then, they are duplicated and
stacked one after another to form the input se-
quence X = [l, f, c] = [x1, x2, x3] ∈ R3×d to the
DNC. The output sequence Y = [y1, y2, y3] ∈ R3×d

is summed along the first dimension to obtain the
final output o and the last R read vectors are con-
catenated to form the global read vector r. Finally,
the second intermediate output z2 is obtained by
projecting [o; r] onto the same space as z1 and the
final output z is computed by summing z1 and z2.
We concatenated the last read vectors to the DNC’s
output to preserve the memory information from
the last step of processing the input sequences.

Answer Prediction. Given that VideoQA is for-
mulated as a classification task, the fused features
z are projected onto the answer space using a fully-
connected layer. A sigmoid function is applied to
train the network with binary cross-entropy (BCE)
loss (see Figure 1).

4 Experiments

Datasets. We conducted experiments on two
open-ended VideoQA datasets: MSVD-QA and
MSRVTT-QA (Xu et al., 2017). They are, in turn,
based on the Microsoft Research Video Description
Corpus (MSVD) (Chen and Dolan, 2011) and the
Microsoft Research Video to Text (MSRVTT) (Xu
et al., 2016) datasets, respectively. Both datasets
contain automatically generated questions that fall
into five different categories: what, who, how, when
and where. MSVD-QA has a total number of 1200
videos and 50 505 question-answer pairs and comes
with three splits based on the videos: The train-
ing, validation, and test sets account for 61%, 13%,
and 26% of the total number of videos, respectively.
Similarly, MSRVTT-QA has three splits with 10 000
videos and 243 680 question-answer pairs in total.
The training, validation, and test sets account for
65%, 5%, and 30% of the total number of videos,
respectively. Further details on the datasets can be
found in Appendix A.1.

Implementation Details. For each video, we
sampled nv = 20 frames and clips and used them
to generate the static and dynamic visual features.
We set the dimensionality of the input question
features dl and input visual features dv (static and
dynamic) to 512 and 4, 096, respectively. The fused
features z1, z2 and z had a dimension dz = 1, 024.
Following (Vaswani et al., 2017), we set the latent
dimension d of the multi-head attention block to
512 and the number of heads to eight, i.e. each had
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a dimensionality of 64. Since VideoQA is formu-
lated as a classification task, similar to (Xu et al.,
2017), we used the most frequent 1, 000 ground-
truth answers of the training and validation splits
as our answer candidates. The number of video
language co-attention layers K was fixed to six. Fi-
nally, for the DNC3 in the FLF block we used a
two-layer bidirectional LSTM network (Hochreiter
and Schmidhuber, 1997) with 512 hidden dimen-
sions as a controller as well as four read and one
write heads to interact with the 512 × 64 exter-
nal memory matrix. We used Adam (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.98 to optimize
the weights of our model over a maximum of 30
epochs. We set the base learning rate to 10−4.
The batch-size was fixed to 64 and 32 during train-
ing and evaluation, respectively. We implemented
our model in PyTorch (Paszke et al., 2019). It is
based on a Visual Question Answering (VQA) open-
source implementation4 and will be made publicly
available together with our pre-trained models. All
experiments were conducted on one Nvidia Tesla
V100 GPU with 32GB VRAM.

Ablated Models. In all experiments that follow
we denote with VLCN our full model that uses a
DNC inside the FLF block and whose architecture is
illustrated in Figure 1. Although we experimented
with training the DNC with different permutations
of its inputs, we did not obtain any improvements
in terms of performance when we changed the or-
der of the input features. Therefore, we kept the
same order that we used to encode the features (i.e.
[l, f, c]). We additionally implemented different ab-
lated versions of our model to study the impact
of the proposed video language co-attention and
fast-learning fusion:

• MCAN : This is the original MCAN model as pro-
posed in (Yu et al., 2019) but adapted for VideoQA.
We trained it using the concatenated static and dy-
namic visual features as they share the same dimen-
sionality dv. This model was not equipped with our
novel video-language co-attention and fast-learning
feature fusion.

• VLCN−FLF : For this model we used a simple
multimodal fusion by summing the reduced features
l, f and c, i.e. only the first intermediate output z1
was passed through to the subsequent parts of the
network (see Figure 1).

• VLCN+LSTM : For this model we only used the
controller of the DNC, i.e. a two-layer bidirectional
LSTM with 512 hidden dimensions, to compute
the second intermediate output z2 by summing the
outputs of the LSTM and projecting them onto
the same space as z1. This model did not have the

3https://github.com/ixaxaar/pytorch-dnc
4https://github.com/MILVLG/mcan-vqa

external long-term memory matrix and the fast-
learning connections.

Model Training. We evaluated the robustness of
our model and its ablated versions by training each
five times with five different seeds. We report the
performance as µ±σ, where µ and σ are the average
and standard deviation of the ensemble-accuracy
on MSVD-QA and MSRVTT-QA test.

Question Length and Answer Frequency.
Complementing analyses according to common
question type categories (what, who, how, when
and where), we propose two other question-binning
strategies: In the first strategy, questions are put
into three bins based on question length. The first
bin contains questions with up to three words, the
second bin between four and eight, and the last
bin with more than nine words. The longer the
question, the harder it should be for the model
to answer as it requires deeper reasoning and un-
derstanding. In the second strategy, questions are
binned according to the frequency rank of their
ground-truth answers in the training and valida-
tion splits. The first bin contains questions whose
ground-truths are the 100 most frequent answers.
The second contains questions whose ground-truths
are the next 200 most frequent answers. The last
bin contains the rest of the questions, i.e. questions
with the scarcest 700 answers. The rarer answers
to a question are, the more difficult it should be for
the model to answer correctly.

Transfer Learning of the FLF Weights.
MSRVTT-QA includes more questions and longer
videos compared to MSVD-QA: The average video
lengths of MSRVTT-QA and MSVD-QA are 20 and
10 seconds, respectively (Aafaq et al., 2019). Perfor-
mance on MSRVTT-QA should thus benefit from
the knowledge acquired while training on MSVD-
QA (Pan and Yang, 2010). Through transfer-
learning of the fast-learning connections and the
DNC controller weights learned from MSVD-QA,
FLF should be able to better interact with its ex-
ternal memory when dealing with questions from
MSRVTT-QA. To study this hypothesis, we con-
ducted the following experiment: We trained an
ensemble of five VLCNs using five different seeds
on MSVD-QA. Then, we trained two further en-
sembles of five VLCNs on MSRVTT-QA using the
same seeds: For one ensemble, we initialised the
FLF weights of each model with those learned from
MSVD-QA and fine-tuned them on MSRVTT-QA.
We call these models VLCN+FT. For models in
the second ensemble we trained these weights from
scratch. Additionally, we experimented with fine-
tuning the entire architecture of the FLF block
instead. These experiments did not yield any perfor-
mance improvements and we decided not to include
them in this work.
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5 Results

Comparison with the State of the Art.
VLCN achieves competitive performance with the
state of the art on both MSVD-QA and MSRVTT-
QA. On MSVD-QA, our best model reaches an
overall accuracy of 38.06% compared to 35.70%,
36.10%, and 36.20% achieved by CoMVT (scratch)
(Seo et al., 2021), HCRN (Le et al., 2020b), and
MA-DRNN (Yin et al., 2020), respectively. This
corresponds to a relative improvement of 1.86% over
the state of the art when the latter is trained from
scratch (see Table 1). Although CoMVT can reach
an overall accuracy of 42.60%, this was only pos-
sible after a computationally-demanding pretrain-
ing stage on HowToFUP (Miech et al., 2019) —a
dataset consisting of 1.2M instructional videos for
the task of Future Utterance Prediction (FUP). On
the most diverse question types our model achieves
a higher accuracy on what (∼ 4% increase) and
performs slightly worse on who compared to MA-
DRNN. On the other types how, when and where,
our model performs on par with the state of the art
methods. As depicted in Table 2, our best VLCN
model achieves an overall accuracy of 36.01% on
MSRVTT-QA – the second best performance af-
ter CoMVT which achieves 37.30% accuracy when
trained from scratch and 39.50% after pretaining
on HowToFUP.

Ablation Study. Our analysis of the question
length shows that VLCN achieves the best perfor-
mance across all question length bins on MSVD-QA
and on long questions, i.e. questions with length
bigger than three, on MSRVTT-QA (see Tables 3
and 4). By comparing the first two rows of Table 3
and Table 4, we can see that VLCN−FLF outper-
forms MCAN across all of the question length bins
of MSVD-QA and on very long questions (≥ 9) of
MSRVTT-QA. This suggests that our co-attention
approach helps the model make reliable predictions
when the question becomes more complex compared
to the simple question-guided attention over the
stacked visual features. We hypothesize that the
static and dynamic visual features offer complemen-
tary information that our network needs to attend
to, independently of each other, while trying to visu-
ally ground the question. By removing the external
memory of the FLF block and using a plain LSTM
network, VLCN+LSTM falls behind on all question
length bins resulting in an overall accuracy decrease
of 0.84% and 0.8% on MSVD-QA and MSRVTT-
QA, respectively, compared to VLCN (see Tables 3
and 4). We hypothesize that the proposed external
memory is indispensable when answering questions
that exceed the working memory capacity of the
model, i.e. in this case of the LSTM network.

We then analyzed the performance of our ab-
lated versions with respect to the answer frequency

bins (see Table 5). On MSVD-QA, VLCN achieves
the best results on the most challenging questions,
i.e. questions whose answers are not amongst
the 100 most frequent, and performs on par with
VLCN−FLF on questions with the 100 most fre-
quent answers. Although VLCN+LSTM performs
on par with VLCN and improves on the perfor-
mance of MCAN and VLCN−FLF on the most
challenging questions, it falls behind VLCN when
it comes to the easier questions with the most fre-
quent answers. This results in an overall accuracy
decrease of 0.5% compared to VLCN.

Similarly, VLCN outperforms all of its ablated
versions on the most challenging questions of
MSRVTT-QA (see Table 6). In contrast to MSVD-
QA, VLCN+LSTM does not reach superior results
on the most challenging questions compared to
MCAN and VLCN−FLF. Performance on such
questions only improves when using the external
memory. In fact, VLCN achieves 20.97% and 5.84%
on questions with the second 100 most frequent an-
swers and questions with the scarcest 700 answers,
respectively. This translates into a relative im-
provement of 2.49% and 3.89% compared to the
second best models on such answer frequency bins,
i.e. MCAN and VLCN+LSTM, respectively (see
Table 6). It is interesting to see the difficulty of
answering questions with rare ground truth answers
as highlighted by the severe drop in performance
for the last answer frequency bin of Table 5 and
Table 6. We do not think that this is related to
a language understanding problem as suggested
by the error analysis we conducted on the ablated
versions. Please refer to Appendix A.2 for more
details.

Transfer Learning. The last two rows of Ta-
bles 4 and 6 show the importance of curricu-
lum learning (Bengio et al., 2009). By fine-tuning
the converged weights of FLF from MSVD-QA on
MSRVTT-QA, VLCN+FT reaches new state of the
art result on MSRVTT-QA by improving the accu-
racy on all question length and answer frequency
bins compared to VLCN. This indicates that trans-
fer learning of the fast-learning connections of FLF
is possible and improves performance across dif-
ferent datasets. Further details about the effect
of fine-tuning on the performance on individual
question types can be found in Appendix A.3.

Qualitative Analysis. Figure 2 shows sample
attention maps learned by the last video language
co-attention layer together with the predictions of
our model and its ablated versions. These predic-
tions are depicted in the orange box, where other de-
notes the ablated versions of our full VLCN model.
Further examples can be found in Appendix A.4.
The language self-attention SA(L) and the guided-
attention over the clips G(C,L) show that VLCN
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Model
Question Type

What Who How When Where All

ST-VQA (Jang et al., 2017) 18.10 50.00 83.80 72.40 28.60 31.30
Co-Mem (Gao et al., 2018) 19.60 48.70 81.60 74.10 31.70 31.70
HMEMA (Fan et al., 2019) 22.40 50.10 73.00 70.70 42.90 33.70
SSML (Amrani et al., 2020) – – – – – 35.13
QueST (Jiang et al., 2020) 24.50 52.90 79.10 72.40 50.00 36.10
HCRN (Le et al., 2020b) – – – – – 36.10
MA-DRNN (Yin et al., 2020) 24.30 51.60 82.00 86.30 26.30 36.20
CoMVT (Seo et al., 2021)

Scratch – – – – – 35.70
Pretrained – – – – – 42.60

VLCN (Ours) 28.42 51.29 81.08 74.13 46.43 38.06

Table 1: Performance comparison of VLCN with the state of the art on MSVD-QA test. The table shows
the overall accuracy as well as the accuracy with respect to individual question types in %.

Model
Question Type

What Who How When Where All

ST-VQA(Jang et al., 2017) 24.50 41.20 78.00 76.50 34.90 30.90
Co-Mem (Gao et al., 2018) 23.90 42.50 74.10 69.00 42.90 32.00
HMEMA(Fan et al., 2019) 26.50 43.60 82.40 76.00 28.60 33.00
QueST (Jiang et al., 2020) 27.90 45.60 83.00 75.70 31.60 34.60
SSML (Amrani et al., 2020) – – – – – 35.00
HCRN (Le et al., 2020b) – – – – – 35.60
CoMVT (Seo et al., 2021)

Scratch – – – – – 37.30
Pretrained – – – – – 39.50

VLCN (Ours) 30.69 44.09 79.82 78.29 36.80 36.01

Table 2: Performance comparison of VLCN with the state of the art on MSRVTT-QA test. The table
shows the overall accuracy as well as the accuracy with respect to individual question types in %.

Model
Question Length (number of words)

1-3 4-8 ≥ 9 All

MCANavg 35.83 ± 1.30 36.37 ± 0.33 38.13 ± 0.98 36.64 ± 0.44
VLCN−FLFavg 37.85 ± 1.63 36.89 ± 0.28 38.32 ± 0.53 37.16 ± 0.27
VLCN+LSTMavg 39.40 ± 1.64 36.38 ± 0.29 38.33 ± 0.61 36.82 ± 0.31
VLCNavg 39.48± 0.73 37.37± 0.21 38.65± 0.52 37.66± 0.21

Table 3: Performance comparison of different ablated versions of our model on MSVD-QA test. The table
shows the average accuracy and standard deviation µ± σ for each length bin in %.

Model
Question Length (number of words)

1-3 4-8 ≥ 9 All

MCANavg 38.94± 0.46 36.15 ± 0.16 33.35 ± 0.18 35.49 ± 0.16
VLCN−FLFavg 38.49 ± 0.46 35.85 ± 0.17 33.42 ± 0.27 35.29 ± 0.16
VLCN+LSTMavg 38.45 ± 0.35 35.82 ± 0.12 33.15 ± 0.19 35.20 ± 0.12
VLCNavg 38.31 ± 0.41 36.57 ± 0.18 33.45 ± 0.15 35.77 ± 0.15
VLCN+FTavg 38.92 ± 0.27 36.78± 0.02 33.65± 0.08 36.00± 0.01

Table 4: Performance comparison of different ablated versions of our model on MSRVTT-QA test. The
table shows the average accuracy and standard deviation µ± σ for each length bin in %.

attends to the word doing the most. The high val-
ues of the last column of G(L,C) indicate that the
model is searching for possible clips that align well
with the action doing. This highlights the impor-
tance of the independent language guided-attention

over the clips. However, the guided-attention map
over the frames G(L,F ) is flat indicating that the
model is not sure which frames are important to an-
swer the question. This uncertainty is alleviated by
the efficient fast-learning feature fusion of FLF that
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Model
Answer Frequency Bin

1-100 101-300 ≥ 301 All

MCANavg 50.40 ± 0.55 16.09 ± 0.47 2.76 ± 0.18 36.64 ± 0.44
VLCN−FLFavg 51.37± 0.19 15.72 ± 0.90 2.49 ± 0.73 37.16 ± 0.27
VLCN+LSTMavg 50.57 ± 0.86 16.57 ± 1.01 3.25 ± 0.72 36.82 ± 0.31
VLCNavg 51.35 ± 0.36 17.80± 0.42 3.35± 0.17 37.66± 0.21

Table 5: Performance comparison of different ablated versions of our model on MSVD-QA test. The table
shows the average accuracy and standard deviation µ± σ for each frequency bin in %.

Model
Answer Frequency Bin

1-100 101-300 ≥ 301 All

MCANavg 48.90± 0.34 17.08 ± 0.74 3.26 ± 0.29 35.49 ± 0.16
VLCN−FLFavg 48.64 ± 0.11 16.90 ± 0.59 3.28 ± 0.35 35.29 ± 0.16
VLCN+LSTMavg 48.53 ± 0.21 16.62 ± 0.44 3.39 ± 0.29 35.20 ± 0.12
VLCNavg 47.70 ± 0.24 20.97 ± 0.25 5.84 ± 0.18 35.77 ± 0.15
VLCN+FTavg 48.03 ± 0.11 20.98± 0.33 5.88± 0.12 36.00± 0.01

Table 6: Performance comparison of different ablated versions of our model on MSRVTT-QA test. The
table shows the average accuracy and standard deviation µ± σ for each frequency bin in %.

Figure 2: Visualization of the attention maps learned by the last video language co-attention layer. The
indices [0, 19] indicate the individual 20 frames and clips of the video (some of which are shown).

leads our full VLCN model to predict the correct
answer. While all of the ablated versions predict
the wrong answer spread, our VLCN model answers
the question correctly by predicting cut.

6 Conclusion

In this work, we proposed the Video Language Co-
Attention Network (VLCN) for VideoQA. At its
core are two distinct novel contributions: Stacked
co-attention layers in an encoder-decoder frame-
work to separately guide self-attended language fea-
tures over both static video frame and dynamic

clip features; and Fast-Learning Fusion (FLF)
– a memory-enhanced multimodal block to effi-
ciently fuse the reduced features. We demonstrated
that the combination of both results in significant
improvements and competitive performance with
state-of-the-art models on the challenging MSVD-
QA and MSRVTT-QA datasets. We also demon-
strated the particular advantage of our model in
dealing with long questions that require deeper
reasoning or questions with rare answers. Finally,
further experiments showed that our FLF block al-
lows our model to generalize better across different
datasets via transfer learning.
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A Appendix

A.1 Datasets

From Tables 7 and 8 we can see how the ques-
tions are not equally-distributed across all of the
types. Question type what is the most diverse
and accounts for 62.63% and 68.53% of the total

Videos QA pairs
Question Type

What Who How When Where

Train 1200 30 933 19 485 10 479 736 161 72
Val 250 6 415 3995 2168 185 51 16
Test 520 13 157 8149 4552 370 58 28

All 1970 50 505 31 629 17 199 1291 270 116

Table 7: Statistics of MSVD-QA. The table shows
the number of videos and question-answer pairs in
the train, validation, and test splits as well as the
number of questions per question type.

Videos QA pairs
Question Type

What Who How When Where

Train 6513 158 581 108 792 43 592 4067 1626 504
Val 497 12 278 8337 3439 344 106 52
Test 2990 72 821 49 869 20 385 1640 677 250

All 10 000 243 680 166 998 67 416 6051 2409 806

Table 8: Statistics of MSRVTT-QA. The table
shows the number of videos and question-answer
pairs in the train, validation, and test splits as well
as the number of questions per question type.

number of questions in MSVD-QA and MSRVTT-
QA, respectively. Our best VLCN model achieves
new state-of-the-art performance on this question
type across both datasets, i.e. 28.42% and 30.69%
on MSVD-QA and MSRVTT-QA, respectively – a
relative improvement of 4.12% and 2.79% over MA-
DRNN (Yin et al., 2020) and QueST (Jiang et al.,
2020).

A.2 Ablation Study

Tables 9 and 10 show the ensemble performance
of our VLCN model and its ablated versions with
respect to individual question types. On MSVD-
QA, our full model achieves the best accuracy on
the most diverse question type what and performs
on par with its ablated versions on the remaining
question types, i.e. who, how, when, and where.
Similar results can be observed on MSRVTT-QA:
Our full VLCN model achieves the best accuracy
on the most diverse question type what as well
as question type when and performs on par with
the rest of its ablated versions on the remaining
question types who, how, and where.

A.3 Transfer Learning

By observing the last two rows of Table 10, we can
see the effect of transfer learning on the performance
of our full VLCN model with respect to individual
question types. In fact, by fine-tuning the fast-
learning connections and the DNC weights inside
the FLF block on MSRVTT-QA, we improved the
performance on three different questions types, i.e.
the most and second most diverse types what and
who as well as question type when. This results in
a new state-of-the-art overall accuracy of 36.01%.
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Question Type

Model What Who How When Where

MCANavg 26.94 ± 0.43 49.89 ± 0.43 82.48± 0.94 72.76 ± 0.69 45.71 ± 1.43
VLCN−FLFavg 27.23 ± 0.58 50.77 ± 0.68 82.00 ± 1.00 73.79± 1.29 45.71 ± 5.72
VLCN+LSTMavg 26.44 ± 0.69 51.33± 1.12 80.65 ± 3.41 72.06 ± 0.69 47.14± 5.25
VLCNavg 27.89± 0.30 51.14 ± 0.18 81.08 ± 1.30 73.45 ± 0.85 46.43 ± 5.05

Table 9: Performance comparison of different ablated versions of our model on MSVD-QA test. The table
shows the average accuracy and standard deviation µ± σ for each question type in %.

Question Type

Model What Who How When Where

MCANavg 29.33 ± 0.03 45.38± 0.55 83.33± 0.61 75.07 ± 0.47 36.48 ± 1.35
VLCN−FLFavg 29.15 ± 0.18 45.13 ± 0.24 83.01 ± 0.12 75.83 ± 0.76 37.28 ± 1.32
VLCN+LSTMavg 28.92 ± 0.12 45.36 ± 0.32 83.06 ± 0.26 74.89 ± 1.57 37.76± 1.55
VLCNavg 30.39 ± 0.07 43.92 ± 0.40 80.93 ± 0.90 76.87 ± 0.60 37.58 ± 1.48
VLCN+FTavg 30.59± 0.10 44.27 ± 0.22 80.44 ± 1.14 77.75± 0.54 36.80 ± 0.44

Table 10: Performance comparison of different ablated versions of our model on MSRVTT-QA test. The
table shows the average accuracy and standard deviation µ± σ for each question type in %.

A.4 Qualitative Analysis

We further show a qualitative example to highlight
the supremacy of our full VLCN model over its
ablated versions. In Figure 3, we can see how
both the language self-attention SA(L) and the
guided-attention over the frames GA(L,F ) are both
flat indicating that the model is having difficulties
aligning the multi-modal features. However, the
guided-attention over the clips GA(L,C) shows
high attention values to the word who which is,
in this case, the keyword to answer the question
who sat in his chair? depicted in the orange box.
While all of the ablated versions predict the wrong
answer lady, our VLCN model answers the question
correctly by predicting man.
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Figure 3: Visualization of the attention maps learned by the last video language co-attention layer. The
indices [0, 19] indicate the individual 20 frames and clips of the video (some of which are shown).
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