@inproceedings{li-etal-2022-using-grammatical,
title = "Using Grammatical and Semantic Correction Model to Improve {C}hinese-to-{T}aiwanese Machine Translation Fluency",
author = "Li, Yuan-Han and
Young, Chung-Ping and
Lu, Wen-Hsiang",
editor = "Chang, Yung-Chun and
Huang, Yi-Chin",
booktitle = "Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)",
month = nov,
year = "2022",
address = "Taipei, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2022.rocling-1.10/",
pages = "75--83",
abstract = "Currently, there are three major issues to tackle in Chinese-to-Taiwanese machine translation: multi-pronunciation Taiwanese words, unknown words, and Chinese-to-Taiwanese grammatical and semantic transformation. Recent studies have mostly focused on the issues of multi-pronunciation Taiwanese words and unknown words, while very few research papers focus on grammatical and semantic transformation. However, there exist grammatical rules exclusive to Taiwanese that, if not translated properly, would cause the result to feel unnatural to native speakers and potentially twist the original meaning of the sentence, even with the right words and pronunciations. Therefore, this study collects and organizes a few common Taiwanese sentence structures and grammar rules, then creates a grammar and semantic correction model for Chinese-to-Taiwanese machine translation, which would detect and correct grammatical and semantic discrepancies between the two languages, thus improving translation fluency."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-using-grammatical">
<titleInfo>
<title>Using Grammatical and Semantic Correction Model to Improve Chinese-to-Taiwanese Machine Translation Fluency</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuan-Han</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Ping</namePart>
<namePart type="family">Young</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-Hsiang</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yung-Chun</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi-Chin</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Currently, there are three major issues to tackle in Chinese-to-Taiwanese machine translation: multi-pronunciation Taiwanese words, unknown words, and Chinese-to-Taiwanese grammatical and semantic transformation. Recent studies have mostly focused on the issues of multi-pronunciation Taiwanese words and unknown words, while very few research papers focus on grammatical and semantic transformation. However, there exist grammatical rules exclusive to Taiwanese that, if not translated properly, would cause the result to feel unnatural to native speakers and potentially twist the original meaning of the sentence, even with the right words and pronunciations. Therefore, this study collects and organizes a few common Taiwanese sentence structures and grammar rules, then creates a grammar and semantic correction model for Chinese-to-Taiwanese machine translation, which would detect and correct grammatical and semantic discrepancies between the two languages, thus improving translation fluency.</abstract>
<identifier type="citekey">li-etal-2022-using-grammatical</identifier>
<location>
<url>https://aclanthology.org/2022.rocling-1.10/</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>75</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Grammatical and Semantic Correction Model to Improve Chinese-to-Taiwanese Machine Translation Fluency
%A Li, Yuan-Han
%A Young, Chung-Ping
%A Lu, Wen-Hsiang
%Y Chang, Yung-Chun
%Y Huang, Yi-Chin
%S Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)
%D 2022
%8 November
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taipei, Taiwan
%F li-etal-2022-using-grammatical
%X Currently, there are three major issues to tackle in Chinese-to-Taiwanese machine translation: multi-pronunciation Taiwanese words, unknown words, and Chinese-to-Taiwanese grammatical and semantic transformation. Recent studies have mostly focused on the issues of multi-pronunciation Taiwanese words and unknown words, while very few research papers focus on grammatical and semantic transformation. However, there exist grammatical rules exclusive to Taiwanese that, if not translated properly, would cause the result to feel unnatural to native speakers and potentially twist the original meaning of the sentence, even with the right words and pronunciations. Therefore, this study collects and organizes a few common Taiwanese sentence structures and grammar rules, then creates a grammar and semantic correction model for Chinese-to-Taiwanese machine translation, which would detect and correct grammatical and semantic discrepancies between the two languages, thus improving translation fluency.
%U https://aclanthology.org/2022.rocling-1.10/
%P 75-83
Markdown (Informal)
[Using Grammatical and Semantic Correction Model to Improve Chinese-to-Taiwanese Machine Translation Fluency](https://aclanthology.org/2022.rocling-1.10/) (Li et al., ROCLING 2022)
ACL