@inproceedings{chiou-etal-2022-mandarin,
title = "{M}andarin-{E}nglish Code-Switching Speech Recognition System for Specific Domain",
author = "Chiou, Chung-Pu and
Lin, Hou-An and
Chen, Chia-Ping",
booktitle = "Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)",
month = nov,
year = "2022",
address = "Taipei, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2022.rocling-1.25",
pages = "200--204",
abstract = "This paper will introduce the use of Automatic Speech Recognition (ASR) technology to process speech content with specific domain. We will use the Conformer end-to-end model as the system architecture, and use pure Chinese data for initial training. Next, use the transfer learning technology to fine-tune the system with Mandarin-English code-switching data. Finally, use the Mandarin-English code-switching data with a specific domain makes the final fine-tuning of the model so that it can achieve a certain effect on speech recognition in a specific domain. Experiments with different fine-tuning methods reduce the final error rate from 82.0{\%} to 34.8{\%}.",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chiou-etal-2022-mandarin">
<titleInfo>
<title>Mandarin-English Code-Switching Speech Recognition System for Specific Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chung-Pu</namePart>
<namePart type="family">Chiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hou-An</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Ping</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)</title>
</titleInfo>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper will introduce the use of Automatic Speech Recognition (ASR) technology to process speech content with specific domain. We will use the Conformer end-to-end model as the system architecture, and use pure Chinese data for initial training. Next, use the transfer learning technology to fine-tune the system with Mandarin-English code-switching data. Finally, use the Mandarin-English code-switching data with a specific domain makes the final fine-tuning of the model so that it can achieve a certain effect on speech recognition in a specific domain. Experiments with different fine-tuning methods reduce the final error rate from 82.0% to 34.8%.</abstract>
<identifier type="citekey">chiou-etal-2022-mandarin</identifier>
<location>
<url>https://aclanthology.org/2022.rocling-1.25</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>200</start>
<end>204</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mandarin-English Code-Switching Speech Recognition System for Specific Domain
%A Chiou, Chung-Pu
%A Lin, Hou-An
%A Chen, Chia-Ping
%S Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)
%D 2022
%8 November
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taipei, Taiwan
%G Chinese
%F chiou-etal-2022-mandarin
%X This paper will introduce the use of Automatic Speech Recognition (ASR) technology to process speech content with specific domain. We will use the Conformer end-to-end model as the system architecture, and use pure Chinese data for initial training. Next, use the transfer learning technology to fine-tune the system with Mandarin-English code-switching data. Finally, use the Mandarin-English code-switching data with a specific domain makes the final fine-tuning of the model so that it can achieve a certain effect on speech recognition in a specific domain. Experiments with different fine-tuning methods reduce the final error rate from 82.0% to 34.8%.
%U https://aclanthology.org/2022.rocling-1.25
%P 200-204
Markdown (Informal)
[Mandarin-English Code-Switching Speech Recognition System for Specific Domain](https://aclanthology.org/2022.rocling-1.25) (Chiou et al., ROCLING 2022)
ACL