@inproceedings{luo-etal-2022-ynu,
title = "{YNU}-{HPCC} at {ROCLING} 2022 Shared Task: A Transformer-based Model with Focal Loss and Regularization Dropout for {C}hinese Healthcare Named Entity Recognition",
author = "Luo, Xiang and
Wang, Jin and
Zhang, Xuejie",
booktitle = "Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)",
month = nov,
year = "2022",
address = "Taipei, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2022.rocling-1.42",
pages = "335--342",
abstract = "Named Entity Recognition (NER) is a fundamental task in information extraction that locates the mentions of named entities and classifies them in unstructured texts. Previous studies typically used hidden Markov model (HMM) and conditional random fields (CRF) for NER. To learn long-distance dependencies in text, recurrent neural networks, e.g., LSTM and GRU can extract the semantic features for each token with a sequential manner. Based on Transformers, this paper describes the contribution to ROCLING-2022 Share Task. This paper adopts a transformer-based model with focal Loss and regularization dropout. The focal loss is to overcome the uneven distribution of the label. The regularization dropout (r-drop) is to address the problem of vocabulary and descriptions that are too domain-specific. The ensemble learning is to improve the performance of the model. Comparative experiments were conducted on dev set to select the model with the best performance for submission. That is, BERT model with BiLSTM-CRF, focal loss and R-Drop has achieved the best F1-score of 0.7768 and rank the 4th place.",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2022-ynu">
<titleInfo>
<title>YNU-HPCC at ROCLING 2022 Shared Task: A Transformer-based Model with Focal Loss and Regularization Dropout for Chinese Healthcare Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuejie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)</title>
</titleInfo>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named Entity Recognition (NER) is a fundamental task in information extraction that locates the mentions of named entities and classifies them in unstructured texts. Previous studies typically used hidden Markov model (HMM) and conditional random fields (CRF) for NER. To learn long-distance dependencies in text, recurrent neural networks, e.g., LSTM and GRU can extract the semantic features for each token with a sequential manner. Based on Transformers, this paper describes the contribution to ROCLING-2022 Share Task. This paper adopts a transformer-based model with focal Loss and regularization dropout. The focal loss is to overcome the uneven distribution of the label. The regularization dropout (r-drop) is to address the problem of vocabulary and descriptions that are too domain-specific. The ensemble learning is to improve the performance of the model. Comparative experiments were conducted on dev set to select the model with the best performance for submission. That is, BERT model with BiLSTM-CRF, focal loss and R-Drop has achieved the best F1-score of 0.7768 and rank the 4th place.</abstract>
<identifier type="citekey">luo-etal-2022-ynu</identifier>
<location>
<url>https://aclanthology.org/2022.rocling-1.42</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>335</start>
<end>342</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at ROCLING 2022 Shared Task: A Transformer-based Model with Focal Loss and Regularization Dropout for Chinese Healthcare Named Entity Recognition
%A Luo, Xiang
%A Wang, Jin
%A Zhang, Xuejie
%S Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)
%D 2022
%8 November
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taipei, Taiwan
%G Chinese
%F luo-etal-2022-ynu
%X Named Entity Recognition (NER) is a fundamental task in information extraction that locates the mentions of named entities and classifies them in unstructured texts. Previous studies typically used hidden Markov model (HMM) and conditional random fields (CRF) for NER. To learn long-distance dependencies in text, recurrent neural networks, e.g., LSTM and GRU can extract the semantic features for each token with a sequential manner. Based on Transformers, this paper describes the contribution to ROCLING-2022 Share Task. This paper adopts a transformer-based model with focal Loss and regularization dropout. The focal loss is to overcome the uneven distribution of the label. The regularization dropout (r-drop) is to address the problem of vocabulary and descriptions that are too domain-specific. The ensemble learning is to improve the performance of the model. Comparative experiments were conducted on dev set to select the model with the best performance for submission. That is, BERT model with BiLSTM-CRF, focal loss and R-Drop has achieved the best F1-score of 0.7768 and rank the 4th place.
%U https://aclanthology.org/2022.rocling-1.42
%P 335-342
Markdown (Informal)
[YNU-HPCC at ROCLING 2022 Shared Task: A Transformer-based Model with Focal Loss and Regularization Dropout for Chinese Healthcare Named Entity Recognition](https://aclanthology.org/2022.rocling-1.42) (Luo et al., ROCLING 2022)
ACL