@inproceedings{lee-etal-2022-overview,
title = "Overview of the {ROCLING} 2022 Shared Task for {C}hinese Healthcare Named Entity Recognition",
author = "Lee, Lung-Hao and
Chen, Chao-Yi and
Yu, Liang-Chih and
Tseng, Yuen-Hsien",
booktitle = "Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)",
month = nov,
year = "2022",
address = "Taipei, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2022.rocling-1.46",
pages = "363--368",
abstract = "This paper describes the ROCLING-2022 shared task for Chinese healthcare named entity recognition, including task description, data preparation, performance metrics, and evaluation results. Among ten registered teams, seven participating teams submitted a total of 20 runs. This shared task reveals present NLP techniques for dealing with Chinese named entity recognition in the healthcare domain. All data sets with gold standards and evaluation scripts used in this shared task are publicly available for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2022-overview">
<titleInfo>
<title>Overview of the ROCLING 2022 Shared Task for Chinese Healthcare Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lung-Hao</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-Yi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang-Chih</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuen-Hsien</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)</title>
</titleInfo>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the ROCLING-2022 shared task for Chinese healthcare named entity recognition, including task description, data preparation, performance metrics, and evaluation results. Among ten registered teams, seven participating teams submitted a total of 20 runs. This shared task reveals present NLP techniques for dealing with Chinese named entity recognition in the healthcare domain. All data sets with gold standards and evaluation scripts used in this shared task are publicly available for future research.</abstract>
<identifier type="citekey">lee-etal-2022-overview</identifier>
<location>
<url>https://aclanthology.org/2022.rocling-1.46</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>363</start>
<end>368</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overview of the ROCLING 2022 Shared Task for Chinese Healthcare Named Entity Recognition
%A Lee, Lung-Hao
%A Chen, Chao-Yi
%A Yu, Liang-Chih
%A Tseng, Yuen-Hsien
%S Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022)
%D 2022
%8 November
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taipei, Taiwan
%F lee-etal-2022-overview
%X This paper describes the ROCLING-2022 shared task for Chinese healthcare named entity recognition, including task description, data preparation, performance metrics, and evaluation results. Among ten registered teams, seven participating teams submitted a total of 20 runs. This shared task reveals present NLP techniques for dealing with Chinese named entity recognition in the healthcare domain. All data sets with gold standards and evaluation scripts used in this shared task are publicly available for future research.
%U https://aclanthology.org/2022.rocling-1.46
%P 363-368
Markdown (Informal)
[Overview of the ROCLING 2022 Shared Task for Chinese Healthcare Named Entity Recognition](https://aclanthology.org/2022.rocling-1.46) (Lee et al., ROCLING 2022)
ACL