HiJoNLP at SemEval-2022 Task 2: Detecting Idiomaticity of Multiword Expressions using Multilingual Pretrained Language Models

Minghuan Tan


Abstract
This paper describes an approach to detect idiomaticity only from the contextualized representation of a MWE over multilingual pretrained language models. Our experiments find that larger models are usually more effective in idiomaticity detection. However, using a higher layer of the model may not guarantee a better performance. In multilingual scenarios, the convergence of different languages are not consistent and rich-resource languages have big advantages over other languages.
Anthology ID:
2022.semeval-1.23
Volume:
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
Month:
July
Year:
2022
Address:
Seattle, United States
Editors:
Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis Palmer, Nathan Schneider, Siddharth Singh, Shyam Ratan
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
190–196
Language:
URL:
https://aclanthology.org/2022.semeval-1.23
DOI:
10.18653/v1/2022.semeval-1.23
Bibkey:
Cite (ACL):
Minghuan Tan. 2022. HiJoNLP at SemEval-2022 Task 2: Detecting Idiomaticity of Multiword Expressions using Multilingual Pretrained Language Models. In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 190–196, Seattle, United States. Association for Computational Linguistics.
Cite (Informal):
HiJoNLP at SemEval-2022 Task 2: Detecting Idiomaticity of Multiword Expressions using Multilingual Pretrained Language Models (Tan, SemEval 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.semeval-1.23.pdf
Video:
 https://aclanthology.org/2022.semeval-1.23.mp4
Code
 visualjoyce/ciyi
Data
AStitchInLanguageModels