@inproceedings{roman-rangel-etal-2022-uaem,
title = "{UAEM}-{ITAM} at {S}em{E}val-2022 Task 5: Vision-Language Approach to Recognize Misogynous Content in Memes",
author = "Roman-Rangel, Edgar and
Fuentes-Pacheco, Jorge and
Hermosillo Valadez, Jorge",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.semeval-1.83",
doi = "10.18653/v1/2022.semeval-1.83",
pages = "605--609",
abstract = "In the context of the Multimedia Automatic Misogyny Identification (MAMI) competition 2022, we developed a framework for extracting lexical-semantic features from text and combine them with semantic descriptions of images, together with image content representation. We enriched the text modality description by incorporating word representations for each object present within the images. Images and text are then described at two levels of detail, globally and locally, using standard dimensionality reduction techniques for images in order to obtain 4 embeddings for each meme. These embeddings are finally concatenated and passed to a classifier. Our results overcome the baseline by 4{\%}, falling behind the best performance by 12{\%} for Sub-task B.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roman-rangel-etal-2022-uaem">
<titleInfo>
<title>UAEM-ITAM at SemEval-2022 Task 5: Vision-Language Approach to Recognize Misogynous Content in Memes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edgar</namePart>
<namePart type="family">Roman-Rangel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Fuentes-Pacheco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Hermosillo Valadez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyam</namePart>
<namePart type="family">Ratan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the context of the Multimedia Automatic Misogyny Identification (MAMI) competition 2022, we developed a framework for extracting lexical-semantic features from text and combine them with semantic descriptions of images, together with image content representation. We enriched the text modality description by incorporating word representations for each object present within the images. Images and text are then described at two levels of detail, globally and locally, using standard dimensionality reduction techniques for images in order to obtain 4 embeddings for each meme. These embeddings are finally concatenated and passed to a classifier. Our results overcome the baseline by 4%, falling behind the best performance by 12% for Sub-task B.</abstract>
<identifier type="citekey">roman-rangel-etal-2022-uaem</identifier>
<identifier type="doi">10.18653/v1/2022.semeval-1.83</identifier>
<location>
<url>https://aclanthology.org/2022.semeval-1.83</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>605</start>
<end>609</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UAEM-ITAM at SemEval-2022 Task 5: Vision-Language Approach to Recognize Misogynous Content in Memes
%A Roman-Rangel, Edgar
%A Fuentes-Pacheco, Jorge
%A Hermosillo Valadez, Jorge
%Y Emerson, Guy
%Y Schluter, Natalie
%Y Stanovsky, Gabriel
%Y Kumar, Ritesh
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Singh, Siddharth
%Y Ratan, Shyam
%S Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F roman-rangel-etal-2022-uaem
%X In the context of the Multimedia Automatic Misogyny Identification (MAMI) competition 2022, we developed a framework for extracting lexical-semantic features from text and combine them with semantic descriptions of images, together with image content representation. We enriched the text modality description by incorporating word representations for each object present within the images. Images and text are then described at two levels of detail, globally and locally, using standard dimensionality reduction techniques for images in order to obtain 4 embeddings for each meme. These embeddings are finally concatenated and passed to a classifier. Our results overcome the baseline by 4%, falling behind the best performance by 12% for Sub-task B.
%R 10.18653/v1/2022.semeval-1.83
%U https://aclanthology.org/2022.semeval-1.83
%U https://doi.org/10.18653/v1/2022.semeval-1.83
%P 605-609
Markdown (Informal)
[UAEM-ITAM at SemEval-2022 Task 5: Vision-Language Approach to Recognize Misogynous Content in Memes](https://aclanthology.org/2022.semeval-1.83) (Roman-Rangel et al., SemEval 2022)
ACL