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Introduction

Welcome to the Workshop - Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems
(SereTOD), co-located with EMNLP 2022!

Task-oriented dialog (TOD) systems are designed to assist users to accomplish their goals. Recently,
neural generative approaches have received increasing attention. Unfortunately, building TOD systems
remains as a label-intensive and time-consuming task. The process still heavily relies on manually la-
beled dialog data and annotated task-related knowledge base. However, unlabeled data are often easily
available in many forms such as human-to-human dialogs, open-domain text corpus, and unstructured
knowledge documents. The purpose of this Workshop is to invite researchers from both academia and
industry to share their perspectives on building semi-supervised and reinforced TOD systems, discuss
challenges and advance the field in joint effort.

In parallel, we open up a challenge, in which we collect and share a newly released, large-scale, human-
human dialog dataset, called the MobileCS (Mobile Customer Service) dataset to foster this line of
research. The Challenge consists of two tracks: Information extraction from dialog transcripts (Track 1),
and Task-oriented dialog systems (Track 2). Congratulations to the 15 teams, who submitted effective
results, out of the total of 62 teams registered for the SereTOD Challenge!

We received submissions from all levels of methodologies, algorithms, models, system developments,
applications and datasets towards semi-supervised and reinforced TOD systems. Given the high-quality
submissions received and the capacity of the Workshop, the selection process was very competitive. We
accepted 11 papers accounting for 47% of the submissions. Further, authors of a total of 13 Findings
papers on Dialog have confirmed to present at the Workshop (as nonarchival presentations). In total, we
have 24 papers included in the program, splitting into 4 oral sessions and 1 poster session.

SereTOD Workshop is co-located with EMNLP on December 7, 2022 (virtually with EMNLP main ven-
ue and on-site in Beijing). In additional to the paper presentations, the program also features 3 invited
talks, a panel, as well as awards for the SereTOD Challenge.

We would like to take this opportunity to thank the Program Committee for their support and thorough
reviews. We are deeply honored to have excellent talks from our invited speakers - Pascale Fung, Di-
lek Hakkani-Tur, and Jason Williams. We are especially thankful for the support from Joint Institute of
Tsinghua University - China Mobile Communications Group Co. Ltd. Finally, we are grateful for the
extensive help from EMNLP 2022 workshop co-chairs, Daniel Hershcovich and Asli Celikyilmaz.

We sincerely hope you will enjoy a memorable SereTOD Workshop!

The SereTOD Workshop General Chairs,
Zhijian Ou, Tsinghua University
Junlan Feng, China Mobile
Juanzi Li, Tsinghua University

iv



Organizing Committee

Organizers
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Program Committee

Reviewers

Lu Chen, Shanghai Jiaotong University
He He, New York University
Yi Huang, China Mobile Research
Bing Liu, Facebook
Yang Liu, Amazon
Verena Rieser, Heriot-Watt University
Rui Yan, Renmin University of China
Koichiro Yoshino, RIKEN
Kai Yu, Shanghai Jiaotong University
Jiangjiang Zhao, China Mobile Online Services
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Keynote Talk: Ingesting Knowledge from Diverse Sources to
Open Domain Social Conversations

Dilek Hakkani-Tur
Amazon

Abstract: Following the recent advancements in language modeling and availability of large natural
language datasets, the last decade has been flourishing for conversational AI research. The progress also
helped emphasize the importance of reasoning over a diverse set of external knowledge and task comple-
tion resources for forming relevant, informative, and accurate responses, discussing with the users when
the available solutions/information are not sufficient, and making proactive suggestions. For ingesting
knowledge in conversations, recent work has mainly grounded conversational responses on knowledge
snippets from wikipedia and web documents, with the goals of preventing hallucination and providing
users diverse and accurate responses. However, much of the world’s knowledge is dynamic and it is
spread across diverse resources. Some of these are already structured, such as knowledge graphs. But
a majority of them are not structured, for example, news articles and books. And some of them also
include subjective information, such as customer reviews. In this talk, I will discuss our recent work on
integrating knowledge to conversation responses from such a diverse set of resources, challenges asso-
ciated with these, and progress we made so far.

Bio: Dilek Hakkani-Tür is a senior principal scientist at Amazon Alexa AI focusing on enabling natural
dialogues with machines. Prior to joining Amazon, she was a researcher at Google Research, Microsoft
Research, International Computer Science Institute at University of California, Berkeley, and AT&T Labs
- Research. She received her BSc degree from Middle East Technical Univ., and MSc and PhD degrees
from Bilkent Univ., Department of Computer Engineering. Her research interests include conversational
AI, natural language and speech processing, spoken dialogue systems, and machine learning for language
processing. She has over 80 patents that were granted and co-authored more than 300 papers in natural
language and speech processing. She received several best paper awards for publications she co-authored
on conversational systems, from IEEE Signal Processing Society, ISCA, EURASIP and others. She
served as an associate editor for IEEE Transactions on Audio, Speech and Language Processing (2005-
2008), a member of the IEEE Speech and Language Technical Committee (2009-2014), an area editor
for speech and language processing for Elsevier’s Digital Signal Processing Journal and IEEE Signal
Processing Letters (2011-2013), the Editor-in-Chief of the IEEE/ACM Transactions on Audio, Speech
and Language Processing (2018-2021), and an IEEE Distinguished Industry Speaker (2021). She also
served on the ISCA Advisory Council (2015-2019) and the IEEE Signal Processing Society Fellows
Committee (2019-2022). She was elected as a fellow of the IEEE (2014) and ISCA (2014).
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Keynote Talk: Insights on the relationship between usage
frequency, user proficiency, and interaction quality for a

virtual assistant
Jason D. Williams

Apple

Abstract: For a virtual assistant, it seems clear that users who have a higher-quality experience would
tend to use the assistant more. But causality is less obvious — for example, does higher usage frequency
result from higher-quality interactions, or is higher usage frequency a reflection of higher user proficien-
cy? How does user proficiency change over time? In this talk I’ll cover a quantitative investigation into
the relationships between usage frequency, user proficiency, and interaction quality for a real-world vir-
tual assistant. The insights from this study may help inform reward or loss functions for virtual assistants
optimized with reinforcement or semi-supervised learning. This is joint work with colleagues Zidi Xiu,
Kai-Chen Cheng, David Q. Sun, Jiannan Lu, Hadas Kotek, Paul McCarthy, Yuhan Zhang, Christopher
Klein, and Stephen Pulman.

Bio: Jason D. Williams leads a team that builds language understanding for Siri at Apple, where he has
been since 2018. Prior to Apple, he was a Research Manager at Microsoft Research, leading research
groups on conversational systems and reinforcement learning. Jason has published over 60 peer-reviewed
papers on dialog systems and related areas, with over 8,000 citations and five best paper/presentation
awards. Jason initiated the Dialog State Tracking Challenge series in 2012; shipped components of the
first release of Microsoft Cortana in 2014; and launched Microsoft’s Language Understanding Service
(www.luis.ai (http://www.luis.ai/)) in 2015. Jason has previously served as an elected member of the
IEEE Speech and Language Technical Committee (SLTC) in the area of spoken dialogue systems for
3 terms, President of SIGDIAL, senior area chair at ACL and EMNLP, and general chair and technical
chair of IEEE ASRU.
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Keynote Talk: Responsible & Empathetic Human Robot
Interactions

Pascale Fung
Hong Kong University of Science & Technology

Abstract: Conversational AI (ConvAI) systems have applications ranging from personal assistance,
health assistance to customer services. They have been in place since the first call centre agent went
live in the late 1990s. More recently, smart speakers and smartphones are powered with conversational
AI with similar architecture as those from the 90s. On the other hand, research on ConvAI systems has
made leaps and bounds in recent years with sequence-to-sequence, generation-based models. Thanks
to the advent of large scale pre-trained language models, state-of-the-art ConvAI systems can generate
surprisingly human-like responses to user queries in open domain conversations, known as chit-chat.
However, these generation based ConvAI systems are difficult to control and can lead to inappropria-
te, biased and sometimes even toxic responses. In addition, unlike previous modular conversational AI
systems, it is also challenging to incorporate external knowledge into these models for task-oriented dia-
log scenarios such as personal assistance and customer services, and to maintain consistency. In this
talk, I will introduce state-of-the-art generation based conversational AI approaches, and will point out
remaining challenges of conversational AI and possible directions for future research, including how to
mitigate inappropriate responses. I will also present some ethical guidelines that conversational AI sy-
stems can follow.

Bio: Pascale Fung is a Professor at the Department of Electronic & Computer Engineering and De-
partment of Computer Science & Engineering at The Hong Kong University of Science & Technology
(HKUST). Prof. Fung received her PhD in Computer Science from Columbia University in 1997. She
worked and studied at AT&T Bell Labs (1993 1997), BBN Systems & Technologies (1992), LIMSI,
CNRS, France (1991), Department of Information Science, Kyoto University, Japan (1989 1991), and
at Ecole Centrale Paris, France(1988). She is an elected Fellow of the Association for Computational
Linguistics (ACL) for her significant contributions towards statistical NLP, comparable corpora, and buil-
ding intelligent systems that can understand and empathize with humans. She is an Fellow of the Institute
of Electrical and Electronic Engineers (IEEE) for her contributions to human-machine interactions and
an elected Fellow of the International Speech Communication Association for fundamental contributions
to the interdisciplinary area of spoken language human-machine interactions. She served as Editor and
Associate Editor for Computer Speech and Language, IEEE ACM Transactions on Audio, Speech and
Language Processing, Transactions for ACL, IEEE Signal Processing Letters. She served as a Com-
mittee Member of the IEEE Signal Processing Society Speech and Language Technology Committee
(SLTC) for six years. She is a past president t and a Board Member of the ACL Special Interest Group
on Linguistics Data and Corpus Based Approaches in NLP (SIGDAT).
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Abstract

The primary purpose of dialogue state track-
ing (DST), a critical component of an end-to-
end conversational system, is to build a model
that responds well to real-world situations. Al-
though we often change our minds from time
to time during ordinary conversations, cur-
rent benchmark datasets do not adequately re-
flect such occurrences and instead consist of
over-simplified conversations, in which no one
changes their mind during a conversation. As
the main question inspiring the present study,
“Are current benchmark datasets sufficiently di-
verse to handle casual conversations in which
one changes their mind after a certain topic is
over?” We found that the answer is “No” be-
cause DST models cannot refer to previous user
preferences when template-based turnback ut-
terances are injected into the dataset. Even in
the the simplest mind-changing (turnback) sce-
nario, the performance of DST models signif-
icantly degenerated. However, we found that
this performance degeneration can be recov-
ered when the turnback scenarios are explicitly
designed in the training set, implying that the
problem is not with the DST models but rather
with the construction of the benchmark dataset.

1 Introduction

The dialogue state tracking (DST) module is a part
of a task-oriented dialogue system, the main role
of which is to extract essential information of user
preferences from various conversational situations.
Based on the given information from the previous
module, the DST module finds appropriate slot-
value pairs to understand the current conversational
situations, and these pairs are then delivered to the
next module to continue the conversation. Hence,
building an accurate DST model is a key success
factor of the overall task-oriented dialogue system
not only because it can convince users that the
system perfectly understands what they are talk-
ing about, but also because appropriate responses

can be generated based on the result of the DST
model. As in other natural language processing
(NLP) tasks, two main components are mandatory
to build a good DST model: (1) well-structured
machine learning models and (2) sufficiently large
datasets that contain various real-world conversa-
tional situations with fewer biases for training the
model. Since the introduction of Transformer and
BERT (Vaswani et al., 2017; Devlin et al., 2018),
various breakthrough model structures have been
designed for DST, such as SUMBT and SOM-
DST (Lee et al., 2019; Kim et al., 2020), and have
shown an excellent performance. With respect to
DST-specific datasets, by contrast, some bench-
mark datasets, such as WOZ (Wen et al., 2017)
and MultiWOZ (Budzianowski et al., 2018), have
been introduced; however, their sizes and cover-
age are not yet satisfactory owing to the relatively
high labeling cost. For example, the MultiWOZ
only consists of approximately 10,000 dialogues
from some different domains, which is significantly
smaller than other NLP datasets such as SQuAD or
IMDB (Rajpurkar et al., 2016; Maas et al., 2011).

Whereas the MultiWOZ has been used as a stan-
dard benchmark dataset for DST, there has been
an increasing number of recent studies reporting
the concerns regarding the inherent limitations of
this dataset. First, newer versions of MultiWOZ
have been proposed to address certain issues such
as annotation errors, typos, standardization, anno-
tation consistency, and other factors (Eric et al.,
2019; Zang et al., 2020; Han et al., 2020; Ye et al.,
2021). In addition, Qian et al. (2021) pointed out
an entity bias issue, i.e., only a small number of
values in the ontology account for the majority
of labels. For example, a large number of ‘train-
destination’ slots take the value ‘cambridge’ in the
MultiWOZ (Qian et al., 2021). In addition, with
CoCo (Li et al., 2020), an overestimation of the
held-out accuracy was pointed out by showing that
the training and evaluation sets of the MultiWOZ

1



I would like to find some 
expensive mexican cuisine.

Chiquito restaurant bar is an 
expensive restaurant in the south. 

Would you like me to book it?

Sure that would be great.

Okay, is there a particular 
day and time that would 

work for you?

Yes I would like it made for 
wednesday for 7 people at 

18:30 please.

Booked! Your table will be held 
for 15 minutes. Reference 

number is c3hmwgus.

That’s great. 
Thank you very much.

Is there anything else 
I can do for you?

That’s it for now. Thanks.

Restaurant
-Food
(Mexican)

Restaurant
-PriceRange
(Expensive)   

Restaurant
-Name
(Chiquito 
Restaurant Bar)

Restaurant
-Book Day
(Wendesday)

Restaurant
-Book People
(7)

Restaurant
-Book Time
(18:30)

(a) Benchmark

Restaurant
-Food
(Mexican)

Restaurant
-PriceRange
(Expensive)

I would like to find some 
expensive mexican cuisine.

Chiquito restaurant bar is an 
expensive restaurant in the south. 

Would you like me to book it?

Sure that would be great.

That’s it for now. Thanks.

Thanks.

Oh, can you find cheaper 
restaurant? It would 

be better.

Restaurant
-Food
(Mexican)

Restaurant
-PriceRange
(Expensive)   

⋯

Restaurant
-PriceRange
(Cheap)

(b) In reality

Figure 1: Dialogue flow example of MultiWOZ 2.1 (MUL1514.json).

have a similar distribution, and controllable coun-
terfactual goals were proposed that do not change
the original dialogue flow but generate a new dia-
logue with different responses.

Although previous studies have raised inherent
problems in the MultiWOZ, most have tended to
focus on correcting the annotation inconsistency
or entity biases, which enforces the dialogue in
the dataset to be more idealistic. However, in real-
world conversations, the dialogue flow between
two speakers is not always as fluent as those in
the MultiWOZ, e.g., one can occasionally change
one’s mind during a conversation. For example,
Figure 1a shows a sample dialogue in the Multi-
WOZ. No slot that appears once appears again in
the subsequent dialogue turns. As the main hypoth-
esis motivating this study, real conversations do
not always continue as shown in Figure 1a, but
often continue as shown in Figure 1b. Individuals
change their mind during a conversation, and thus
some slot-value pairs (same slot but different val-
ues) repeatedly appear in an entire dialogue. This
hypothesis has led us to raise the main question
of this paper: “Can the current benchmark dataset
handle a situation in which users change their mind

after a certain amount of turn?” Our assumption
is that the turnback situation of a user will hamper
the robust evaluation of DST models because such
models do not have a chance to learn the situation
in which the values of specific slots are changed
during the conversation. To experimentally verify
our assumption, we investigate how DST models
handle additional turnback dialogues by injecting
template-based utterances under different scenarios
on the MultiWOZ.

It is common for users to change their decisions
in various ways in the real world, and thus we
define four turnback situations as follows:

• SINGLE TURNBACK : This is the simplest
form in which the user changes the decision
of a single slot only once.

• RETURN TURNBACK : This is the reverse of
a decision twice but returning to the original
value of a single slot.

• DUAL-VALUE TURNBACK : The decision for
a single slot is changed twice and thus the
corresponding values are also changed twice.

• DUAL-SLOT TURNBACK : The decision for

2



two slots are sequentially changed. The corre-
sponding values are changed only once.

The remaining states are more complicated variants
of the simplest versions by modifying the num-
ber of repetitions or slots. There are some ways
to generate turnback utterances such as manually
annotating dialogues or generating with the help of
language models (Raffel et al., 2020). In this study,
we injected turnback utterances at the end of the ex-
isting dialogue using pre-defined templates for two
reasons. First, locating turnback utterances at the
end of the dialogue is a better way to verify the abil-
ity handling long-range contexts for the model. Sec-
ond, template-based-generated utterances explic-
itly mention the information of domain, slot,
and value in a raw text, which can play a role as
the minimal form of turnback scenarios. We found
even these simple and explicit forms of turnback
utterances are sufficient to disclose the problem.

In this paper, we evaluate the performance of
turnback situations with TRADE, SUMBT, and
Transformer-DST (Wu et al., 2019; Lee et al., 2019;
Zeng and Nie, 2021). The results show that exist-
ing models cannot detect changing user preferences
when injecting turnback utterances in the test set;
the same trends are also shown in all variants of
turnback scenarios. We further determined that in-
cluding turnback utterances appropriately during
the training phase can make a model robust because
the model performance rebounds. To summarize,
the main contributions of this paper can be summa-
rized as follows:

• We define the problem that the current bench-
mark cannot handle, i.e., the change in deci-
sion of the user after a certain topic is over,
which must be considered when constructing
an realistic conversational system.

• We quantitatively and qualitatively evaluate
three representative DST models to verify the
effect of the turnback situation by injecting
template-based utterances into the existing
dataset.

• We explore the effect of various turnback
proportions in both the training and testing
datasets: When turnback utterances appear
in the test set, models trained with the data
including turnback utterances become more
robust.

2 Related Work

2.1 Limitation of Benchmark Dataset
MultiWOZ (Budzianowski et al., 2018) is one of
the most popular multi-domain task-oriented dia-
logue datasets. Although a new task-oriented dia-
logue dataset, such as SGD (Rastogi et al., 2020),
has been recently proposed, most previous studies
still evaluate the performance based on MultiWOZ
(Kim et al., 2022). However, it has been revealed
that the MultiWOZ has inherent errors and biases,
and several studies have been proposed to resolve
the reported issues.

Annotation error Even the recent versions of
MultiWOZ still have incorrect labels and inconsis-
tent annotations (Eric et al., 2019; Zang et al., 2020;
Han et al., 2020; Ye et al., 2021). These noises are
the primary reason why it is challenging to accu-
rately evaluate the model performance. Fortunately,
the benchmark is continuously updated by progres-
sively correcting any annotation errors found.

Biased slots The slots in MultiWOZ are biased.
The slots in the training and test sets overlap by
more than 90%, and the co-occurrence between
slots in the test set is also unequally distributed.
DST models are vulnerable to unseen slots because
biased slots do not consider rare but realistic slot
combinations. To relieve this assumption, CoCo
(Li et al., 2020) generates counterfactual dialogues
to allow the existing dataset to cover realistic con-
versation scenarios.

Biased entities Entities in the MultiWOZ are
also significantly biased. The test dataset has most
of the entities that appear in the training dataset,
and existing models are vulnerable to unseen en-
tities (e.g., “cambridge” appearing in 50% of the
destination cities in the train domain) (Qian et al.,
2021). Thus, the new test dataset consisting of un-
seen entities is proposed, which also results in a
decrease in performance (Qian et al., 2021).

Change my mind During a real conversation,
people often change their minds. For example,
when making a reservation for a restaurant, one
might change the number of visitors, arrival time,
or menu. When catching a taxi, the rider might ask
the driver to go to their office first, and suddenly
decide to go home to take a rest instead. Someone
might want to sleep more, so they might delay their
departure time. There are many other examples
in which speakers change their mind or decision

3



That’s all. Thank you so 
much for the help!

Thanks.

Can you please change the 
taxi destination to centre?

(a) SINGLE TURNBACK

That’s all. Thank you so 
much for the help!

Thanks.

Can you please change the 
taxi destination to centre?

Sure, completed.

Oh, it would be better not to 
change. Please keep the taxi 

destination to cambridge. 

(b) RETURN TURNBACK

That’s all. Thank you so 
much for the help!

Thanks.

Can you please change the 
taxi destination to centre?

Sure, completed.

Umm. I  want to change the 
taxi destination to 
cafe jello gallery.

(c) DUAL-VALUE TURNBACK

That’s all. Thank you so 
much for the help!

Thanks.

Can you please change the 
taxi destination to centre?

Sure, completed.

Hold on, I think changing 
restaurant food to european is 

better.

(d) DUAL-SLOT TURNBACK

Figure 2: An example of proposed turnback situations. Text in orange denotes a domain, blue denotes a slot, and
green denotes a value.

[ Train ]
1: Umm. I think it’s better to change {domain} {slot} to {value}.
2: Can you change {domain} {slot} to {value}? I forgot it.
3: Oh, I need to change {domain} {slot} to {value}. Please fix it.

[ Validation ]
1: Oh, I took a mistake. Change {domain} {slot} to {value} please.
2: It would be better to change {domain} {slot} to {value}. Can you make it?
3: I forgot about it, I want to change {domain} {slot} to {value}.

[ Test ]
1: I think {value} is better. I want to change {domain} {slot} to {value}.
2: Wait, it might be better to change {domain} {slot} to {value}.
3: Hold on, I’ve been thinking about it and 

I think changing {domain} {slot} to {value} will be better.

Figure 3: Template utterances of each phase (train, vali-
dation, and test).

during a conversation. Unfortunately, the current
well-known DST benchmark dataset does not seem
to take these scenarios into serious consideration.
All conversations continue naturally, and no one
reverses what they have said. Some approaches re-
flect changing decisions of the user but only cover
changes in the same dialog topic (Bordes et al.,
2017; Mosig et al., 2020). Our contention regarding
the conditions of a good DST benchmark dataset is
that the conversations in the dataset should reflect
more realistic situations, e.g., frequent turnback ut-
terances, which are a main component of ordinary
conversations in the real world.

This paper is partially related to Jakobovits et al.
(2022), which points out the current task-oriented
dialogue benchmark only considers short-term con-
text rather than long history. Our turnback scenar-
ios are the representative phenomena that show the
lack of conversationality of the benchmark dataset,
defined in Jakobovits et al. (2022).

3 Method

To test whether the model trained with the cur-
rent DST dataset can track the change in value
of the turnback situation, we assume four turn-

back scenarios and inject these turnback utter-
ances at the end of every dialogue, as repre-
sented as Figure 2. In other words, each data
containing dialogue of t turns can be formulated
as Xt = {(U sys

1 , Uusr
1 ), . . . , (U sys

t , Uusr
t )}, and

we then append an extra template-generated turn
with one of the aforementioned turnback situa-
tions at the end of the existing data, resulting in
Xk = {(U sys

1 , Uusr
1 ), . . . , (U sys

k , Uusr
k )}, where

k = t+1 for a single turnback situation or k = t+2
for multiple situations. Figure 3 shows examples of
a turnback used in each dataset. Note that we used
different templates for different datasets to avoid
an overlap across the datasets. Whenever applying
a template-based utterance generation, the arbitrary
template of each phase is selected at each turn of
dialogue.

As the main purpose of this paper is to investi-
gate whether the model can follow the user’s mind-
changing utterances, we designed the simplest form
of turnback utterances: injecting them to the last
turn and generating utterances using templates. The
former is to assume the mind-changing within the
longest history in a single dialogue, and the lat-
ter is to show that models cannot track changing
values when even the most informative turnback
utterances are explicitly provided. Accordingly, we
defined four variants of turnback situations as fol-
lows:

SINGLE TURNBACK Users change the value of
a particular slot only once, as shown in Figure
2a. Basically, a single turnback utterance is con-
structed using the last turn of the dialogue because
it contains accumulated belief states that appeared
throughout the dialogue. Figure A1 shows the pro-
cess of generating a single turnback utterance and
skipping the process when there is no belief stated
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(d) Transformer-DST

Figure 4: Performance gap based on the existence of turnback in the training data. Lower bound indicates the
performance of not correctly predicting additional turnback turns at all.

during the dialogue.

RETURN TURNBACK Users change the value
of a particular slot but return to the original value
again, as shown in Figure 2b. This means that the
final belief state after injecting a return turnback ut-
terance is the same as the belief state of the original
dataset. In this case, the first turnback utterance can
be generated like a single turnback process, and the
second turnback utterance is then generated identi-
cally by simply replacing the changed value with
the original value.

DUAL-VALUE TURNBACK Users sequentially
change the value of a particular slot twice, as shown
in Figure 2c. Dual value turnback utterances can
be generated in the same way as return turnback
utterances, but can be generalized to a triple or
quadruple value turnback if there are more than
two available values in the slot on the ontology.

DUAL-SLOT TURNBACK Users first change the
value of a particular slot and then also change the
value of a different slot, as represented in Figure 2d.
This can be generated simply by applying a single
turnback twice; however, there must be more than
two total belief states to apply this scenario.

4 Experiments

4.1 Experimental setup

We verified our hypothesis using the MultiWOZ
2.1 (Eric et al., 2019), the most commonly used
DST dataset in previous studies. As a performance
metric, the joint goal accuracy was employed. The
joint goal accuracy is a standard criterion used to
check if the model tracks the triplet of (domain,
slot, value) precisely. When tracked cor-
rectly, the joint goal accuracy is marked as 1, and
is otherwise 0. The numbers of training, valida-
tion, and test sets are 8420, 1000, and 999, re-
spectively. The open-source code for the TRADE
model was from CoCo repository1, while the code
for SUMBT2 and Transformer-DST3 was from
the original author, respectively. For the TRADE
model, we also considered the model trained jointly
with CoCo-augmented dataset (Li et al., 2020). All
the experiments explained later were conducted
using a machine with the NVIDIA GeForce RTX
3090 GPU.

1https://github.com/salesforce/coco-dst
2https://github.com/SKTBrain/SUMBT
3https://github.com/zengyan-97/Transformer-DST
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4.2 Main results

Figure 4 shows the main results. As the extra turn-
back utterances are appended to the original dataset,
we reported the performance lower bound where
the model does not predict the additional states
of turnback utterances at all (blue color). In other
words, the joint goal accuracy of every turn of
turnback scenarios is zero in the lower bound set-
ting. The performance of the original model with
turnback-included test set is reported with the or-
ange color. Compared to the lower bound, the
model trained with the original set correctly pre-
dicts only a few altered dialogue states. In the case
of multiple turnbacks (i.e., RETURN TURNBACK

, DUAL-VALUE TURNBACK , and DUAL-SLOT

TURNBACK ), the models with RETURN TURN-
BACK resulted in relatively better performance than
the others. This is not because the model predict
the state values in the turnback utterance correctly,
but because RETURN TURNBACK has the same
value with the original state value. Note that these
turnback utterances generated using templates are
the easiest form of the situation, explicitly provid-
ing the entire information of domain, slot, and
value.

4.3 Including turnback dialogues in the
training set

Because the main hypothesis was sufficiently sup-
ported by the first experiment, we further inves-
tigated whether including turnback situations in
the training dataset can prevent the model from
not being able to trace the changing values. We
inserted turnback utterances at the end of all train-
ing train and validation data, and different template
utterances were randomly used for the training and
validation phases, as illustrated in Figure 3.

The green-colored bar in Figure 4 shows the
joint goal accuracy for each turnback scenario be-
fore and after the turnback utterance are included
in the training and validation datasets with a perfor-
mance lower bound of newly added turnback turns.
The performance always improves irrespective of
the turnback scenarios and DST models. Also note
that the performance recovery is more significant
for more complicated turnback scenarios. Injecting
turnback utterances increases the joint goal accu-
racy by 1.83%p on average for a single turnback,
whereas the average improvement is 4.90%p for
the dual slot turnback.

In addition to achieving a quantitative rebound

in performance, we also conducted a qualitative
comparison of the model predictions before and
after the turnback injection in the training and vali-
dation datasets. Table 1 shows an example of dual
slot turnback dialogue, and the predicted states of
the Transformer-DST model are as shown in Ta-
ble 2. The prediction results of the remaining three
turnback situations are also provided in Tables A1,
A2, and A3. The first row of Table 2 is the last
turn of the original dialogue, and we can see that
both the original and dual-trained model predict
the belief states correctly. In the second and third
rows of the same table, when the values of two slots
are sequentially changed, the original model can
catch only one changing value (‘finches bed and
breakfast’). Not being able to follow all changes
is frequently detected with the original model in
other test dialogues. By contrast, the model trained
with the turnback utterances can correctly predict
the entire belief state, as shown in the last row and
the last column of Table 2.

Based on the results shown in Figure 4 and Table
2, we can conclude that the performance degener-
ation of the DST models is not because the DST
model structures are incorrect but because they do
not have a chance to train such turnback utterances
with the current benchmark DST dataset, which
means that the MultiWOZ dataset does not have
a sufficient coverage yet for dialogues in the real-
world.

4.4 Difference in performance according to
turnback proportion

We also conducted an ablation study on how the
turnback utterance proportions in the training and
test dataset affect the DST performance. We evalu-
ate five different proportions of turnback-injected
training and test datasets (i.e., 0%, 30%, 50%, 70%,
and 100%) with corresponding turnback-test situ-
ations, resulting in a total of 25 combinations of
training-test turnback proportions. We named each
turnback-mixed dataset phase-N%. For example,
Train-30% denotes the dataset in which 30% of
the turnback utterances are applied to the existing
dialogues, and the remaining 70% of the original
dialogues are unmodified. The performances of
Transformer-DST are shown in Table 3. The perfor-
mance of the other models are provided in Tables
A4, A5, and A6. The last column of the table is
the difference between the best-proportion model
performance and the original performance.
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Turn # Dialogue History

1 System: “ ”
User: “I need a taxi. I’ll be departing from la raza.”

2 System: “I can help you with that. When do you need to leave?”
User: “I would like to leave after 11:45 please.”

3 System: “Where will you be going?”
User: “I’ll be going to restaurant 17.”

4 System: “I have booked for you a black volkswagen, the contact number is 07552762364. Is
there anything else I can help you with?”
User: “No, that’s it. Thank you!”

5 System: “Completed.”
User: “Wait , it might be better to change taxi leave at to 15:00.”

6 System: “Sure. Anything else?”
User: “Hold on , I’ve been thinking about it and I think changing taxi destination to finches
bed and breakfast will be better.”

Table 1: Sample dialogue of test set with additional DUAL-SLOT TURNBACK situation (SNG01367.json).

Gold state Predicted state Predicted state
(label) (original model) (DUAL-SLOT-trained model)

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-15:00", "taxi-leaveat-11:45", "taxi-leaveat-15:00",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-15:00", "taxi-leaveat-11:45", "taxi-leaveat-15:00",

"taxi-destination- "taxi-destination- "taxi-destination-
finches bed and breakfast" finches bed and breakfast" finches bed and breakfast"

Table 2: The model prediction on DUAL-SLOT TURNBACK situation at turn 4, 5, and 6 (SNG01367.json).

SINGLE TURNBACK

Train-0% Train-30% Train-50% Train-70% Train-100% Difference

Test-0% 54.47 54.40 54.32 54.44 52.80 -0.03%p
Test-30% 53.04 53.81 53.84 54.00 52.22 0.96%p
Test-50% 52.06 53.44 53.36 53.46 51.88 1.40%p
Test-70% 50.90 52.81 52.78 52.73 51.12 1.91%p
Test-100% 49.84 51.98 52.23 52.32 50.65 2.48%p
* Bold denotes the best, and underline denotes the second-best performance.

Table 3: Joint goal accuracy (%) of Transformer-DST with different SINGLE TURNBACK proportions.
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Based on Table 3, we can draw the following
observations. First, adding moderate turnback utter-
ances does not significantly affect the performance
on Test-0%, which is the original test dataset. The
joint goal accuracies of Train-30%, Train-50%, and
Train-70% are very close to that of Train-0%. Sec-
ond, high proportions of turnback utterances in the
training set help recover the performance in most
cases. With regard to turnback ratio in the training
dataset, above 70% of the turnback utterance show
the best performance in Table 3, A4, and A6. In the
case of Table A5, we expect that conterfactual slot
combinations provided in CoCo-augmented dataset
can assist the model’s robust prediction.

5 Conclusion

A DST model should focus on properly reacting
to unpredictable scenarios from a human speaker.
From this perspective, using realistic benchmark
datasets for the model is crucial. To validate recent
DST models trained on the commonly used DST
benchmark dataset, we first designed a template-
based (but enough to verify the hypothesis) data
injection method to create a turnback situation
and modified the test dataset by appending one
of four trunback scenarios to the end of the di-
alogue. Our experiment showed that the current
model trained using the existing benchmark cannot
track the changing values well when users change
their decisions. We also conducted additional ex-
periment to investigate whether the model perfor-
mance can be recovered if the turnback utterances
are properly included in the training dataset. Exper-
imental results showed that the joint goal accuracy
was improved for all turnback scenarios when the
models were trained on the dataset with turnback
utterances. The ablation study shows that moder-
ately including the turnback utterances can manage
a broader range of turnback proportions. Our exper-
imental results emphasize that constructing a right
benchmark dataset is as important as developing
an advanced model structure in NLP tasks.

Despite the meaningful results, we argue that
the turnback utterance is just one of many situa-
tions that can happen in a real-world conversation.
If more diverse realistic dialogue scenarios are re-
flected in the DST benchmark dataset, the bias of
models trained on it can be significantly reduced.
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System Utterance: “Is there anything to help?”
User Utterance: “No, that’s all. Thanks.”
Turn Index: 7
Belief State:  

{
‘restaurant-food’: ‘european’,
‘taxi-destination’: ‘cambridge’,
‘hotel-name’: ‘lensfield hotel’

}

(a) Get the last turn’s dialog.

System Utterance: “Is there anything to help?”
User Utterance: “No, that’s all. Thanks.”
Turn Index: 8
Belief State:  

{
‘restaurant-food’: ‘european’,
‘taxi-destination’: ‘cambridge’,
‘hotel-name’: ‘lensfield hotel’

}

(b) Duplicate dialog and 
randomly select belief state.

System Utterance: “Is there anything to help?”
User Utterance: “No, that’s all. Thanks.”
Turn Index: 8
Belief State:  

{
‘restaurant-food’: ‘european’,
‘taxi-destination’: ‘stansted airport’,
‘hotel-name’: ‘lensfield hotel’

}

(c) Replace the value of selected belief state
with a different value on ontology.

System Utterance: “Thanks.”
User Utterance: “Wait, it might be better to 
change taxi destination to stansted airport.”
Turn Index: 8
Belief State:  
{

‘restaurant-food’: ‘european’,
‘taxi-destination’: ‘stansted airport’,
‘hotel-name’: ‘lensfield hotel’

}

(d) Change system utterance and
apply a template to user utterance.

Figure A1: Process of SINGLE TURNBACK dialogue generation.
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Gold state Predicted state Predicted state
(label) (original model) (SINGLE-trained model)

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",

"taxi-destination- "taxi-destination "taxi-destination
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-, "taxi-departure- "taxi-departure-
london liverpool street", la raza", london liverpool street",

"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",
"taxi-destination- "taxi-destination- "taxi-destination-

restaurant 17" restaurant 17" restaurant 17"

Table A1: Model prediction on SINGLE TURNBACK situation at turns 4 and 5 (SNG01367.json).

Gold state Predicted state Predicted state
(label) (original model) (RETURN-trained model)

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-, "taxi-departure- "taxi-departure-
the copper kettle", la raza", the copper kettle",
"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

Table A2: Model prediction on RETURN TURNBACK situation at turns 4, 5, and 6 (SNG01367.json).

Gold state Predicted state Predicted state
(label) (original model) (DUAL-VALUE-trained model)

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-11:45", "taxi-leaveat-11:45", "taxi-leaveat-11:45",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-10:15", "taxi-leaveat-10:15", "taxi-leaveat-10:15",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

"taxi-departure-la raza", "taxi-departure-la raza", "taxi-departure-la raza",
"taxi-leaveat-12:00", "taxi-leaveat-10:15", "taxi-leaveat-12:00",

"taxi-destination- "taxi-destination- "taxi-destination-
restaurant 17" restaurant 17" restaurant 17"

Table A3: Model prediction on DUAL-VALUE TURNBACK situation at turn 4, 5, and 6 (SNG01367.json).
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SINGLE TURNBACK

Train-0% Train-30% Train-50% Train-70% Train-100% Difference

Test-0% 49.55 48.47 48.25 48.11 48.81 -0.74%p
Test-30% 47.82 47.41 47.16 47.16 47.82 0.00 %p
Test-50% 46.52 46.62 46.41 46.67 47.24 0.72%p
Test-70% 45.31 45.92 45.63 45.85 46.50 1.19%p
Test-100% 44.05 45.12 45.13 45.29 46.36 2.31%p
* Bold denotes the best, and underline denotes the second-best performance.

Table A4: Joint goal accuracy (%) of TRADE with different SINGLE TURNBACK proportions.

SINGLE TURNBACK

Train-0% Train-30% Train-50% Train-70% Train-100% Difference

Test-0% 50.21 48.40 49.80 47.73 48.05 -0.41%p
Test-30% 48.36 47.30 48.74 46.81 47.22 0.38%p
Test-50% 47.13 46.57 48.16 46.07 46.62 1.03%p
Test-70% 46.02 45.57 47.42 45.38 45.89 1.40%p
Test-100% 44.49 44.75 46.73 44.75 45.30 2.24%p
* Bold denotes the best, and underline denotes the second-best performance.

Table A5: Joint goal accuracy (%) of TRADE + CoCo with different SINGLE TURNBACK proportions.

SINGLE TURNBACK

Train-0% Train-30% Train-50% Train-70% Train-100% Difference

Test-0% 46.99 46.24 46.32 47.16 47.10 0.17%p
Test-30% 45.59 46.57 46.17 47.18 47.38 1.79%p
Test-50% 44.80 46.29 45.70 46.70 47.22 2.42%p
Test-70% 43.73 45.54 45.13 46.11 46.39 2.66%p
Test-100% 42.72 45.01 44.70 45.62 46.04 3.32%p
* Bold denotes the best, and underline denotes the second-best performance.

Table A6: Joint goal accuracy (%) of SUMBT with different SINGLE TURNBACK proportions.
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Abstract

With the widespread popularisation of intelli-
gent technology, task-based dialogue systems
(TOD) are increasingly being applied to a wide
variety of practical scenarios. As the key tasks
in dialogue systems, named entity recognition
and slot filling play a crucial role in the com-
pleteness and accuracy of information extrac-
tion. This paper is an evaluation paper for Sere-
TOD 2022 Workshop challenge (Track 1: In-
formation extraction from dialog transcripts).
We proposed a multi-model fusion approach
based on GlobalPointer, combined with some
optimisation tricks, finally achieved an entity
F1 of 60.73, an entity-slot-value triple F1 of 56,
and an average F1 of 58.37, and got the highest
score in SereTOD 2022 Workshop challenge1.

1 Introduction

Task-oriented dialogue (TOD) systems are de-
signed for specific application areas and have
gained more and more attention in both academia
and industry recently (Gao et al., 2019).

As a branch of the dialogue systems, TOD sys-
tems are different from question-and-answer (QA)
systems and chat-oriented dialogue systems. TOD
system needs to determine the user’s intent through
understanding, analysis, information extraction,
and clarification. Then complete a round of dia-
logue through natural language generation or APIs.

According to the work of Zhao et al. (Zhao and
Eskenazi, 2016) and Zhang et al. (Zhang et al.,
2020), the structure of a traditional TOD system
is shown in Figure 1, which can be divided into
three modules, Spoken Language Understanding
(SLU), Natural Language Generation (NLG), and
Dialogue Manager.

The SLU Module converts language into seman-
tic representations, the purpose is to obtain the
semantic information of user input speech. The

1https://docs.google.com/spreadsheets/d/1w28AKkG6W
jmuo15QlRlRyrnv859MT1ry0CHV8tFxY9o/edit?usp=sharing

Figure 1: The data samples in the product catalogue in
the Shopping Queries Data Set.

downstream module of SLU is the dialogue man-
ager module. The task of this module is to de-
cide how the system responds to the input speech
(McTear, 2004) and then the system updates its
internal state, and then the system determines the
system behaviour through policies. In order to pro-
vide information to the user, the dialogue manager
usually needs to query the knowledge base or the
Internet, and it also needs to consider the historical
data in the multi-round dialogue. Finally, the NLG
module translates the decisions of the system into
natural language-based dialogues. Among them,
the state variables contain variables that track the
dialogue process, as well as slots that represent user
needs.

1.1 Task description
The task of SereTOD 2022 Workshop challenge
consists of 2 tracks, and we focus on track 1 (Infor-
mation extraction from dialogue transcripts) in this
paper. There are four sub-tasks for track 1:

• Entity Extraction. Extract entity mentions
in real-life dialogues according to the entity
types defined in the schema (including related
data package plan and services, a total of nine
categories).

• Entity Coreference Resolution. Since an
entity might be mentioned in different surface

1
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Figure 2: A basic unit of the MobileCS (mobile
customer-service) dialog dataset.

forms, for example, "100元的流量包", "那
个流量包", "100元的那个业务", "刚才那业
务" may refer to the same entity " 100元流量
包 (100 Yuan data package plan)". Thus we
need to represent the entities with coreference
relationships in a unified id.

• Slot Filling. Extract the slot value correspond-
ing to the entity slots (including the specific
content of the package or business and the
status of the user, etc.). For example, in the
dialogue "10GB套餐的月费用是50元 (The
price for the 10GB data package plan is 50
Chinese Yuan per month)", "50元 (50 Chinese
Yuan)" will be the value for the monthly price
slot.

• Entity Slot Alignment. Align entities and
slot values with corresponding relationships.

1.2 Data description

The data for this challenge is MobileCS (mobile
customer-service) dialog dataset (Ou et al., 2022)
around 100K dialogues (in Chinese), which come
from real-world dialogue transcripts between real
users and customer-service staffs from China Mo-
bile, with privacy information anonymised.

The official data includes three parts: training
data, dev data and test data. A basic unit of the data
sample is shown in Figure 2. In which Speaker
ID such as "[SPEAKER 1]" and "[SPEAKER 2]"
refer to the speaker of the dialogue, "用户意图"

represents the user intent, "客服意图" represents
the system intent, the entities and triples are the
information mentioned in this turn.

2 Approach

In this paper, we focus on the baseline (Liu et al.,
2022) and practical business difficulties of and dia-
logue system, and propose suitable solutions. The
difficulties can be summarised as follows:

• In the slot value extraction stage, the length of
the slot value to be extracted is relatively long,
the categories are complex, and the general
sample repetition is relatively small. Espe-
cially for the categories ’业务规则’ and ’持
有套餐’.

• The problem of label scope coverage nesting.
Labels from class A may be overwritten by
labels from class B.

• The distribution of training data, dev data, and
test data has an obvious difference.

• Some single-turn dialogues with entities con-
tain very little information, but there are many
entities containing business rules need to be
identified.

According to the above-mentioned difficulties,
our solutions can be summarised as follows:

• We apply the GlobalPointer to the Entity Ex-
traction and Slot Filling tasks , set different
loss weights for positive and negative sam-
ples.

• Data pre-processing： The addition of global
context information, split the paragraphs into
single characters, merge the original training
data and dev data to train.

• We add training data and dev data to the Pre-
trained Masked Language Model.

• We optimized the Entity Slot Alignment task
to increase the cross-validation score by 9 per-
centage points.

• In the Entity Extraction task, we trained some
models with different maximum token length
(384, 256, 280). The differences between
models bring benefits to fusion.

2
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• We truncate the 256 × 256 token probabil-
ity matrix according to the maximum entity
length and fuse it to greatly reduce memory
consumption.

• For the overlapping nested entities in the En-
tity Extraction task, we do post-processing to
eliminate them.

2.1 Model and tricks
In the challenge, we found that nested entities and
non-nested entities coexist in training data and dev
data. The sequence-to-sequence method in baseline
cannot handle the situation of nested entities, there-
fore, we use the end-to-end method to solve this
tough issue. In entity extraction and slot filling, we
are mainly based on GlobalPointer (Su et al., 2022),
a novel efficient span-based approach for named
entity recognition, which uses global normalisa-
tion for named entity recognition, and can identify
nested and non-nested entities indiscriminately.

For any sentence, GlobalPointer constructs an
upper triangular matrix to traverse all valid spans,
as shown in Figure 3, each grid corresponds to an
entity span. Assuming that after the input sentence

Figure 3: Schematic diagram of GlobalPoniter multi-
head identification of nested entities.

passes through the encoder, the representations at
positions i and j are hi and hj , and the query vector
qi and key vector kj of the two are obtained through
the fully connected layer:

qi = Wqhi + bq

kj = Wkhj + bk

Then the score of each span s(i, j) predicted as an
entity is:

s(i, j) = qTi kj

On this basis, GlobalPointer incorporates the Ro-
tational Position Encoding (RoPE) mechanism to
explicitly introduce relative position information to

the prediction of span pairs. For position m, RoPE
calculates an orthogonal matrix Rm, then multiply
Rm by q to rotate q. According to the matrix mul-
tiplication rule, if k is also multiplied by the RoPE.
At this time, the score s(i, j) of the span will have
relative position information Rn−m:

(Rmqi)
T (Rnkj) = qTi R

T
mRnkj = qTi Rn−mkj

2.1.1 Loss function
Since the number of entities in the sentences in the
dataset is very small and there are a large number
of negative samples, we do not use binary classifi-
cation in our method but designed a multi-label loss
function. For identifying entities of a specific class
α, the fragments with sα(i, j) > 0 are regarded as
the output of entities of type α. The loss function
is:

log(1+
∑

(i,j)∈Pα

e−sα(i, j))+log(1+
∑

(i,j)∈Qα

esα(i, j))

Where Pα is a set of spans with entity type α in the
dataset, Qα is a set of spans that are not entities or
whose entity type is not α in the sample, we only
need to consider the combination of i ≤ j, which
is the upper triangular matrix in the blue area in
Figure 2.

ω = {(i, j)|1 ≤ i ≤ j ≤ n}

Pα =
{
(i, j)|t[i:j] ∈ α

}

Qα = Ω− Pα

Due to the low accuracy in the entity extraction
stage, we increase the loss weight of positive sam-
ples and decrease the loss weight of negative sam-
ples, which can increase F1 by about one percent-
age point. However, slot filling cannot effectively
improve the model accuracy through different loss
weights.

2.1.2 How to use the dev data
In view of the large difference in the distribution
of training data, dev data, and test data, how to
use dev data is also a key factor to ensure that
the model can perform well in test data. First, we
locate the position of the slot value of the official
dev data. However, some position tags are difficult
to capture, so we eliminate them in the training
phase. Then we will merge and disarrange dev data
and training data, and divide them into four folds.
Finally, we will apply the split data to each stage
of the pipeline.
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Figure 4: The data sample from challenge data.

2.1.3 The addition of global context
information

In the challenge data, the information obtained
by simply concatenating [SPEAKER1], and
[SPEAKER2] cannot accurately identify the en-
tity type. As shown in Figure 4, only by adding
context information, we can make it clear that the
name value "二十八的" refers to "套餐" or "4G套
餐". During the optimisation process, we show that
adding global context information can improve a
single model by about 2 percentage points.

Since we take the current dialogue content and
the global context concatenating as input, we mask
the concatenated tokens through attention_mask.
However, the global context information is only
used as enhancement content and does not partic-
ipate in the calculation of loss, so we mask the
context information to calculate the effective loss,
as shown in Figure 5.

Figure 5: Attention_mask based on the global context
and valid_mask for the current conversation.

2.1.4 Break down context by character

There are many phonetic expressions related to
place names and special terms in the training and
dev data of the challenge data. As shown in Figure
6, according to the Chinese BERT (Devlin et al.,
2018) tokenizer, the Chinese pinyin may be split
into words that have nothing to do with semantics,
so we first split the paragraphs into single char-
acters and then send them to the BERT tokenizer.

Figure 6: The sample data of place names with pinyin
expressions and result of segmentation.

2.1.5 Pre-trained Masked Language Model
(MLM)

We add training data and dev data to the Pre-trained
Masked Language Model, and use the pre-trained
model for entity extraction and slot filling, which
increases by about 1 percentage point.

2.1.6 Entity slot alignment task optimisation

In the Baseline (Liu et al., 2022) given by the chal-
lenge, when calculating the similarity between any
entity (ent) and any slot value (triple), there is
some noise affecting the model training, For exam-
ple, when calculating the similarity between ent1
and triple1, such as <entity>ent1<entity>... <en-
tity>ent2<entity>... <slot>triple1<slot>. In this
case, other types of entities appear in the text be-
tween ent1 and triple1 will also be labelled, which
will cause interference in training and dev. There-
fore, in the face of this situation, we remove the
entity tag <entity> related to ent2, which can di-
rectly improve the model verification result by 9
percentage points.

2.1.7 Post-processing

In the post-processing stage, there are many over-
lapping entities in our entity extraction part. In this
case, we choose the one with the highest proba-
bility as the optimal choice. For example, in the
following cases shown in Figure 7, we will remove
ent1 and select ent2:

Figure 7: An example case for post-processing.

3 Model fusion

In terms of data selection and split-folding strategy,
we merge the original training data and dev data,
and split them into four folds for training through k-
fold. In Table 1 and Table 2, the score is calculated
on the out-of-fold of the combination of training
and dev data.
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3.1 Entity extraction

In the entity extraction subtask, we selected five
models of Roformer (Su et al., 2021), DeBERTa
(He et al., 2020), RoBERTa (Liu et al., 2019),
MacBERT (Cui et al., 2020), and NEZHA (Wei
et al., 2019) for probability average fusion, and
found that the fusion of models with different to-
ken lengths can achieve better results. We chose
models with a maximum token length of 256, 280,
and 384 for fusion; at the same time, we also chose
to add Efficient GlobalPointer (Su et al., 2022) to
the fusion to increase the difference. The final
fusion result (mean average of probability) is 1.3
percentage points higher than the highest single
model. The result is shown in Table 1.

Backbone Head Max Length 4 fold F1 Ensemble F1
roformer Efficient_GlobalPointer 384 0.557

0.570
deberta GlobalPointer 280 0.556
nezha GlobalPointer 256 0.547
roberta GlobalPointer 256 0.547
macbert GlobalPointer 256 0.549

Table 1: The model fusion result of entity extraction.

3.2 Slot filling

In the slot filling subtask, we selected four mod-
els of Roformer (Su et al., 2021), RoBERTa (Liu
et al., 2019), MacBERT (Cui et al., 2020), and
NEZHA (Wei et al., 2019) for probability average
fusion. The final fusion result is 0.9 percentage
points higher than the highest single model. The
result is shown in Table 2.

Backbone Head Max Length 4 fold F1 Ensemble F1
roformer GlobalPointer 256 0.607

0.616
nezha GlobalPointer 256 0.605

roberta GlobalPointer 256 0.600
macbert GlobalPointer 256 0.602

Table 2: The model fusion result of slot filling.

3.3 Entity coreference resolution and entity
slot alignment

Due to the time limit of the challenge, the 4-fold
and 5-fold models were not trained for these two
tasks. First, we cut the original data into 4 folds,
and merge three fold data and dev data as training
data to obtain model 1. Then we cut the original
data into 5 folds, and merge four fold data and
dev data as training data to obtain model 2. The
final submission is a probability average fusion of
model1 and model2. The scores are in Table3.

Entity Coreference Resolution
4-fold 5-fold
0.887 0.891

Entity Slot Alignment
4-fold 5-fold
0.884 0.891

Table 3: The 4-fold and 5-fold result for resolution and
alignment.

3.4 GlobalPointer fusion matrix optimisation
In the GlobalPointer fusion stage, a four-
dimensional (sample_num × type_num × L ×
L) matrix is generated. The last two di-
mensions are the maximum token length of
256. Since the final matrix is too large and
there are many models, the memory cost of
Numpy storage and calculation is too high, es-
pecially in the slot filling stage. Therefore, we
first initialise a Numpy matrix (sample_num ×
type_num× L×max_lengh_entity), in which
max_lengh_entity is the maximum entity length,
which is 20 or 50, which is much smaller than 256.
This dimension data is obtained by truncating the
matrix. And through the calculation of the model,
the probability matrix is continuously filled, reduc-
ing the number of variables in the memory, and
finally obtaining the final result. One example is
shown in Figure 8.

4 Conclusion

In this challenge, we use the GlobalPointer-based
structure and probabilistic average fusion of Ro-
former, DeBERTa, RoBERTa, MacBERT, and
NEZHA as the main solution. At the same time,
we adopted tricks such as adding global context in-
formation and breaking down context by character
in the following step to further optimise the results.
Finally, we end up with an entity F1 of 60.73, an
entity-slot-value triple F1 of 56, and an average F1
of 58.37, and got the highest average F1 score in
the challenge of SereTOD 2022 Workshop.
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Figure 8: EntityExtraction task probability fusion – get effective probability by stagger truncation with maximum
entity length of 20.
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Abstract

This paper describes our solution for Sere-
TOD Challenge Track 1: Information extrac-
tion from dialog transcripts. We propose a
token-pair framework to simultaneously iden-
tify entity and value mentions and link them
into corresponding triples. As entity mentions
are usually coreferent, we adopt a baseline
model for coreference resolution. We exploit
both annotated transcripts and unsupervised di-
alogs for training. With model ensemble and
post-processing strategies, our system signif-
icantly outperforms the baseline solution and
ranks first in triple f1 and third in entity f1.

1 Introduction

Task-oriented dialogs cover a wide range of daily
application, such as ordering food, booking tickets,
and querying services. With the development of
deep learning and natural language processing, AI
assistants start to replace human operators in a few
basic scenarios. However, correctly extracting key
information in complicated contexts and generat-
ing human-like yet informative responses remain a
challenge for both academia and industry.

The SereTOD 2022 Workshop introduces a chal-
lenge on mobile customer-service scenario with
real-world dialog dataset (Ou et al., 2022). We
mainly participate in Track 1: Information extrac-
tion from dialog transcripts, and present our token-
pair framework based solution in this paper.

2 Background

The challenge provides around 100k dialog tran-
scripts between mobile service users and staff, ti-
tled as MobileCS dataset, of which 10k are anno-
tated while the rest are unlabeled. The annotation
includes service entities and the attributes or values
of the service (e.g. package price) or the user (e.g.
account balance) mentioned in the dialog. As the
dialogs are generally colloquial, co-references are

required to be resolved for entity mentions. More-
over, values for an entity may scatter in multi-turn
dialogs or nested inside the verbal expression of
entities.

Track 1 is mainly formulated as an information
extraction problem and contains two sub-tasks: (1)
entity extraction, i.e., to extract entity mentions
with their corresponding entity types as defined in
the schema; (2) slot filling, i.e., to extract values for
entity attributes and to match the slot-value pairs
with the corresponding entity concepts. F1 score is
the metric for system evaluation.

3 System Overview

3.1 Model Design
The submitted system consists of two models: an
information extractor for both entity extraction and
slot filling, and a co-reference resolution model for
value-entity assignment.

3.1.1 Information Extractor
Recent works (Wang et al., 2020; Su et al., 2022;
Li et al., 2022) on named entity recognition and
information extraction shift from the conventional
sequence labeling method into the token-pair ap-
proach. A token-pair based model outputs logits
in the shape of c × n × n, where c denotes the
number of types and n denotes sequence length,
predicting over possible spans in the sequence for
all the types.

Compared with previous methods, the token-pair
approach has the following advantages. First and
foremost, it supports nested and multilabel enti-
ties. In the MobileCS dataset, target entities are
often nested due to the colloquial references. For
example, the price entity 38-yuan is nested inside
the package entity that 38-yuan package. In addi-
tion, an entity may belong to multiple types, as de-
fined in the schema. Such cases cannot be properly
handled by sequence labeling method as a token-
level classification task. Secondly, the token-pair
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Figure 1: illustration of information extractor model, composed of an entity recognition module, a value recognition
model, and an entity-value linking module. Each module is a token-pair based structure that consider all the possible
spans in the input text and identify the types or relations for the recognized spans.

method directly optimizes the span-level metric
and outputs straightforward result, while previous
methods only focus on the token-level and require
extra decoding modules such as CRF. Last but not
least, the token-pair method is more versatile and
flexible. Apart from NER task, it can be applied to
joint information extraction and potentially other
related tasks with simple modification. However,
for token-pair framework, its output logits are large
in quantity and extremely sparse, raising issues
in model training and ensemble. Fortunately, this
drawback could be alleviated.

Su et al. (2022) proposes GlobalPointer, a model
structured on the token-pair framework. The en-
coder outputs, denoted as [h1,h2, ...,hn], are trans-
formed into queries and keys as qi = Wqhi and
ki = Wkhi. The score for span from i to j for
type t is calculated as:

st(i, j) = qT
i kj +wT

t [qi;ki;qj ;kj ]

where wt is a type-specific transformation.
A multi-label class-imbalance loss is proposed

for countering severe class imbalance issue in the
token-pair setting, where Ωneg and Ωneg are neg-
ative samples and positive samples, si and sj are
the scores for negative and positive sample:

log


1 +

∑

i∈Ωneg

esi


+ log


1 +

∑

j∈Ωpos

e−sj




We adopt both the structure and loss design in
our information extractor model.

Previous token-pair based IE models, such as
GPLinker (Su, 2022) and TPLinker (Wang et al.,
2020), formulate joint extraction as a token pair
linking problem and introduce tagging schemes
that align the boundary tokens of entity pairs under
each relation type. However, entity types are not
considered in the schemes.

Alternatively, we decompose the extractor model
into three modules to simultaneously extract and
link the entity and value mention together with their
types: (1) entity recognition, (2) value recognition,
and (3) entity-value linking, as illustrated in Figure
1. For a candidate span, denoted by the its start
and end positions as [i, j], the first two modules
predict whether the span text is an entity or value
that belongs to the current type, while the linking
module predicts the head-to-head (and tail-to-tail)
matching for an entity and a value mention that
starts (and ends) at position i and j, respectively.
The entity and triple results can be obtained by
combining the outputs of the three modules.

The extractor model is trained with a multitask
loss, where Lent, Lval, and Llink are the multi-
label class-imbalance loss for each module:

Ltotal = λ1Lent + λ2Lval + λ3Llink

For simplicity, we set λ1 = λ2 = λ3 = 1 with-
out further tuning.

3.1.2 Co-reference Resolution Model
As is required, each value should match a resolved
entity concept. We adopt the entity co-reference
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model from the baseline solution (Liu et al., 2022).
The model transforms the embedding of the pre-
dicted entity tokens into corresponding representa-
tions by average pooling, scores candidate entity
pairs, and groups them into concept clusters.

In the predicted triples, a value may correspond
to multiple entity mentions. Once the concept
groups for the entities are determined, we select
the most matched entity’s concept for each value.

We also attempt other approaches for value-
entity resolution. One solution is to group the entity
mentions that correspond to the same value into the
same concept group. By using disjoint set, we can
connect local groups into the global ones. However,
this process is significantly affected by mismatched
triples and achieves relatively low triple metric.

The co-reference resolution model could be in-
tegrated into the IE model and share the same
encoder. Nonetheless, the co-reference resolu-
tion metrics are not stable during training and the
valid result is much lower. How to integrate the
co-reference resolution into the token-pair based
framework remains further investigation.

3.2 Training

Our system is mainly trained on the annotated di-
alogs with exploitation of the unlabeled data.

3.2.1 Labeled Data
As the triple annotation only marks the value men-
tion without detailed positions, we directly match
all the value mentions in the turn utterances and
add position information. Dialogs are then split
into segments every 3 turns, since a majority of
values have their entity mentions appear in this
range. In each segment, we further supplement
triples by matching values and entities that belong
to the same entity group. Utterances are joined by
the [SEP] token as input texts. We add specific
user tokens at the beginning of each text segment,
which serve as the head entity for user-attribute val-
ues. The positions and types of the entity and value
spans are used as supervised signals for training
the IE model.

For the co-reference resolution model, we seg-
ment the sessions with a token length of 512 and
consider the inter-segment entity co-references.
The details are the same as the baseline solution.

3.2.2 Unlabeled Data
We conduct domain adaptive pretraining (Gururan-
gan et al., 2020) on the unlabeled dialog utterances

to further fit the language model into the mobile ser-
vice scenarios. In addition, we infer on the first 10k
unlabeled dialogs with models trained on labeled
data and adopt the predictions as pseudo annota-
tions. These pseudo-labeled dialogs are then used
as training data for a part of the ensemble models.

3.3 Inferring

Different from the data construction strategies in
training stage, we infer on each dialog in a sliding
window manner with a size of 3 turns. For the
predicted triples, which are in the format of (en-
tity, prop, value), we record all distinct value men-
tions and their matched entities. The predicted en-
tities are fed into the co-reference resolution model
and assigned with group ids. Finally, each distinct
value mention shares the same group id as its most
matched entity.

In our submitted system, we ensemble a dozen of
models of different pretraining methods (RoBERTa
by Liu et al., 2019, MacBERT by Cui et al., 2020,
etc., with or without DAPT), model scale (base or
large), and training data (with or without pseudo-
labels), by averaging their logits during inference.
Invalid and repeated predictions are filtered during
this process.

4 Discussions

4.1 Experiments and Results

We present key experiment results on validation
set in Table 1 and briefly discuss the effects of the
proposed strategies. Our scores and rankings in
the official evaluation result are reported in Table 2.
The triple-f1 ranks first among all the teams while
the ent-f1 ranks third. Our averaged f1 only keeps
a minor gap with the top-2 solutions.

4.1.1 Token-pair Framework
Compared with the baseline solution, our system
obtains 19.48 percent absolute improvement in en-
tity f1 and 17.06 percent in triple f1 using the same
backbone model. This result proves the effective-
ness of our token-pair framework. We argue that
the improvement derives from better NER result,
particularly for the nested and multilabel entities,
as well as the joint extraction, alleviating error ac-
cumulation as in the pipeline solution. Moreover,
our system is more efficient than the baseline, since
we integrate three steps (i.e., named entity recog-
nition, slot recognition, and entity slot alignment)
into one IE module that shares the same encoder.
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methods entity metrics (p/r/f1) triple metrics (p/r/f1) #entity #triple
RoBERTalarge Baseline - / - / 33.45 - / - / 34.94 - -
RoBERTabase TPIE 52.87 / 53.37 / 53.12 47.88 / 38.25 / 42.53 6550 8535

w/ coref 52.87 / 53.37 / 53.12 55.07 / 44.00 / 48.92 6550 8535
w/ coref + DAPT 55.99 / 51.84 / 53.83 55.04 / 43.08 / 48.33 6000 8362
w/ coref + pseudo 57.22 / 53.42 / 55.26 58.93 / 45.15 / 51.13 6048 8185

RoBERTalarge TPIE 53.47 / 52.39 / 52.93 52.68 / 40.79 / 45.98 6356 8272
w/ coref 53.47 / 52.39 / 52.93 59.58 / 46.13 / 52.00 6356 8272
w/ coref + DAPT 51.35 / 54.33 / 52.80 60.72 / 45.99 / 52.34 6887 8093
w/ coref + pseudo 53.81 / 53.36 / 53.58 61.37 / 44.58 / 51.65 6457 7759

Ensemble 63.27 / 49.67 / 55.65 63.31 / 36.74 / 46.50 5083 6467
w/ coref 63.27 / 49.67 / 55.65 70.80 / 41.08 / 51.99 5083 6467
w/ coref + lower thres. 56.51 / 56.83 / 56.67 58.55 / 53.16 / 55.72 6527 9701

Table 1: evaluation results on dev set. The baseline result is reported in the official implementation. TPIE is our
token-pair based information extractor. DAPT indicates domain adaptive pretraining on the LM, pseudo indicates
training with 10k pseudo-labeled dialogs, lower thres. indicates adjusting threshold when inferring.

entity f1 entity ranking triple f1 triple ranking avg. f1 avg. ranking
55.17 3 56.07 1 55.62 3

Table 2: official evaluation result

4.1.2 Co-reference Resolution Model

As the challenge requires extracted values to be
related with an entity concept, it is necessary to
train a task-specific co-reference resolution model
in place of the error-prone merging strategy solely
based on the IE triple results. Experiment results
show that better co-reference resolution results im-
prove the triple metric by more than 5 percents.

4.1.3 Training with Unsupervised Data

Domain adaptive pretraining and pseudo labeling
are the two methods for exploiting unsupervised
data. As the mobile service domain differs from
the general pretraining corpus, we expect DAPT
to yield considerable benefit. However, the results
suggest otherwise. To our surprise, training with
pseudo-labeled data improves entity recognition
task. Notably, the triple f1 for RoBERTa base
model is significantly boosted with pseudo-labels.

4.1.4 Large Pretrained Model

Using larger pretrained model improves triple f1,
which relies more on the entity-value linking mod-
ule. Compared with named entity and value recog-
nition, entity-value linking task is more complex
and challenging. We argue that larger models are
capable of solving such harder tasks and contribute
to better performance.

4.1.5 Model Ensemble
Directly adopting model ensemble only yields
marginal or even negative gains. The numbers of
predicted entities and triples drop by a large por-
tion, resulting in higher precision but lower recall.
This suggests model ensemble suppresses the aver-
aged logits and the default threshold is no longer
suitable. We empirically lower the thresholds for
entity and value recognition to balance precision
and recall for higher f-scores.

4.2 Noisy Labels
In the initially released dataset, there exist a number
of noisy entity type labels. Some clearly defined
items are marked with different types. For example,
the item Two City, One Family, is partially marked
as Long-distance Plan and partially Plan, an an-
cestor for the former in the entity type hierarchy.
Classifying an item as its ancestor type, though not
perfect, is somehow acceptable. Therefore, we pro-
pose type smoothing to counter type label noise by
assigning soft label weight instead of hard one-hot
for entity types:

labelji =





w1, if j in ancestor types
w2, if j is annotated type
0, otherwise

Type label discrepancies are mostly corrected
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by rule-based filtering in the later released dataset
during the challenge, thus we do not adopt this
strategy in our submitted system.

Span boundary issues also prevail in the anno-
tated transcript as the entity and value mentions are
typically colloquial. For example, for the expres-
sion that 38-yuan package, annotators may neglect
that. Determiners and attributes as such are tricky
for uniform annotations. Some value types, e.g.
user demands, package rules, are too flexible to
uniformly determine the mention spans.

Boundary smoothing (Zhu and Li, 2022) is a
recently proposed technique to handle boundary
issues for span-based models. It assigns a por-
tion of probability ϵ from the target span [i, j] to
its neighboring spans whose Manhattan distances
are within the smoothing size D. However, we dis-
cover a large portion of boundary noise also exist in
the dev set and urge for cleaner validation samples
to verify the effects of label denoising strategies.

5 Conclusion and Further Work

We present our solution for information extraction
from dialog transcripts in SereTOD Challenge. The
system is trained on both annotated transcripts and
unsupervised dialogs. Various strategies and tricks
are employed to further boost system performance,
with their effects analyzed and discussed. Com-
pared with the baseline implementation, our token-
pair solution not only integrates multiple modules
into a unified model framework, but also signifi-
cantly outperforms the baseline result by more than
20 percent. In the official evaluation results, our
system ranks first in triple-f1 and third in ent-f1.

For further work, we plan to integrate the co-
reference resolution model into the token-pair
framework. We will evaluate the proposed label de-
noising methods and expect a well-anotated dataset.
Detailed settings, such as multi-task weighting,
shall also be tuned for better performance.
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Abstract

Conversation designers continue to face sig-
nificant obstacles when creating production-
quality task-oriented dialogue systems. The
complexity and cost involved in schema devel-
opment and data collection is often a major
barrier for such designers, limiting their abil-
ity to create natural, user-friendly experiences.
We frame the classification of user intent as the
generation of a canonical form, a lightweight
semantic representation using natural language.
We show that canonical forms offer a promis-
ing alternative to traditional methods for in-
tent classification. By tuning soft prompts for
a frozen large language model, we show that
canonical forms generalize very well to new,
unseen domains in a zero- or few-shot setting.
The method is also sample-efficient, reducing
the complexity and effort of developing new
task-oriented dialogue domains.

1 Introduction

Task-oriented dialogue systems in Conversational
AI are challenging for developers to create. The
current generation of dialogue frameworks requires
developers to define actions (intents) and parame-
ters (slots) that the natural language understanding
(NLU) module accepts. This is then used to popu-
late API service calls that operate in the backend
to fulfill the user request. Casting natural language
utterances from the user to a discrete set of in-
tents and slots is often not very intuitive. This in
turn leads to a situation where developers rely on
hand-crafted rule-based grammars or a large anno-
tated set of training samples for machine learning
models to implement a given design. Any change
to the design of the dialogue system would then
require the developers to revisit and modify the im-
plementation which is very often a time-consuming
process. In this work, we aim to make dialogue
system design easier and more intuitive.

∗ Work done as part of an internship with NVIDIA

The tremendous success of pre-trained language
models such as BERT (Devlin et al., 2019) have
made them the de facto standard for most intent
classification and slot-filling tasks. However, these
models are not immune to the challenge of adapt-
ing and extending existing models to new domains.
One adaptation approach that has exploded in pop-
ularity in recent times is the usage of prompts with
these language models. With a task description
and few samples showing the input-output pairs,
these language models become extremely effective
at solving these tasks, especially at larger model
sizes.

Manually specifying prompts suffers from sen-
sitivity to phrasing; we get widely varying results
based on how we frame the prompt. Prompt tun-
ing (Lester et al., 2021) and p-tuning (Liu et al.,
2021) have emerged as strong alternatives to man-
ual prompt designing and they help optimize task-
specific prompt tokens to get the best performance
while keeping the language model itself frozen. In
this work, we explore the task of intent classifi-
cation using these large language models and p-
tuning. Generative methods for classification tasks
have not been widely adopted because generation
is inherently difficult to control and utilize for fur-
ther downstream tasks. Using our experiments on
the Schema Guided Dialogue (Rastogi et al., 2019)
dataset and the Virtual Assistant Benchmark (Liu
et al., 2019), we show that with p-tuning we can
achieve promising zero-shot and few-shot general-
ization capabilities to unseen domains.

In the task of intent classification, the intent la-
bels provided as part of the dataset are usually
terse and rigid. Generative models generalize better
when intent labels are more descriptive but struc-
tured at the same. We borrow some aspects and
terminology from semantic parsing to cast the in-
tent labels to a more compositional format, known
as canonical forms. In the traditional sense, canon-
ical forms are paraphrases of the user utterances to
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convert them to a form that the semantic parser can
operate on to output logical representations. In our
use case, we loosely use the term, canonical forms,
to refer to intent labels that are more descriptive
than the discrete ones but are not too verbose, e.g.,
"transfer_money" → "transfer money to bank ac-
count". We manually frame these canonical forms
and do not rely on any grammar, simplifying the
approach.

We observe that using such canonical forms as
labels for the intent classification task allows the
model to generalize better to domains that are adja-
cent, but not seen at train time (e.g., Flight Reser-
vations → Bus Bookings). We also find that it is
beneficial to do a two-stage P-tuning for domain
adaption, i.e., once we have a p-tuned large lan-
guage model on a wide set of domains, we can
continue p-tuning this model on a small set of la-
belled samples from the target domain to allow
the model to generalize better. We find that this
few-shot approach works very well and this has
promising implications for developers for dialogue
systems; with minimal effort it would be feasible
to adapt an existing model pre-trained on multi-
ple domains to a new domain. In summary, our
contributions are:

• We cast the problem of intent classification
into a generative approach and rewrite intent
labels in a more descriptive format (canonical
forms).

• When using such canonical forms, genera-
tive approaches with Large Language Mod-
els(LLMs) show promising results when com-
pared with traditional methods for intent clas-
sification.

• Generative models generalize very well to
unseen domains in zero-shot and few-shot
settings when compared with BERT-style ap-
proaches.

• We demonstrate the sample efficiency of p-
tuning LLMs where we can achieve close to
full dataset performance with a fraction of the
data.

2 Method

In this section, we describe the creation of canon-
ical forms and the prompt tuning technique we
adopt for intent classification in the task-oriented
dialogue setting.

2.1 Canonical Forms

Canonical forms are usually paraphrases of the
user utterance to a standardized form that can be
utilized by downstream systems. These forms are
traditionally obtained by using a set of grammar
rules written by experts. The output of this process
is a natural language sequence, but structured in
a form that makes it better suited for a semantic
parser. Different semantic parsers employ different
canonical forms and thus transfer across datasets is
quite challenging.

Utterance Canonical Form

what is the newest published article? article that has the largest publication date
who has published the most articles? person that is author of the most number of article

Table 1: Examples of canonical forms corresponding to
user utterances from the Overnight (Wang et al., 2015)
semantic parsing dataset.

Our work uses canonical forms as a method of
obtaining the intent of a user utterance. Tradition-
ally, intent labels tend to be terse, which makes
it difficult for models to generalize to unseen do-
mains. The expressive and compositional nature
of language models can be exploited if the intent
labels are more verbose, allowing them to extrap-
olate the generated intents to capture even novel
domains. At the same time, if the intent labels
tend to be very long and riddled with descriptions,
the language models become susceptible to hallu-
cinations. Our work proposes the use of canonical
forms as a way of establishing a balance between
being terse and too verbose. We map intent labels
to short descriptive phrases, e.g., "check_balance"
→ "check balance in bank account". Unlike tradi-
tional canonical forms, we do not use any formal
grammar to perform this mapping and the phrases
are manually specified. We believe that such an
approach would reduce the burden on developers
and designers of conversational systems.

2.2 P-tuning

Large Language Models (LLMs) have exhibited
remarkable generalization capability when queried
using prompts that contain examples of the task to
be performed. However, the performance of LLMs
varies widely depending on how such prompts are
constructed. In order to overcome this issue of
LLM sensitivity to the format of the prompt, mul-
tiple studies have come up with methods for auto-
mated prompt construction using discrete tokens
(Lester et al., 2021) as well as soft tokens (Liu et al.,
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2021).
In this work, we utilize the p-tuning approach

that appends learnt soft tokens into the prompt that
is fed to the LLM. The soft tokens traditionally
do not have a mapping to words/subwords in the
model vocabulary and are simply vectors optimized
using gradient descent. Following the setup pro-
posed by Liu et al. (2021), we use an LSTM model
to learn and predict these soft tokens. The parame-
ters of the LLM are frozen and only the parameters
of this LSTM model are updated during p-tuning.
We initialize the LSTM with random weights at the
beginning of the p-tuning process and then update it
during the training stage to output the optimal soft
tokens. At the end of the training phase, we store
these soft tokens and append them with the prompt
to the LLM to get its prediction. The advantage
of p-tuning is that we freeze the LM weights and
update only the weights of the LSTM (14M param-
eters). This results in modifying only a very small
fraction of the weights compared to traditional fine-
tuning where all of the weights are updated.

The LM of choice in our experiments are the
Megatron-GPT (Narayanan et al., 2021) models
that are decoder-only transformers.

3 Experimental Setting

In this section, we describe the datasets used, the
baselines we use for comparison and the evaluation
metrics.

3.1 Datasets

We consider two widely known datasets in the
dialogue community, the Schema Guided Dialogue
(SGD) dataset (Rastogi et al., 2019) and the Virtual
Assistant dataset (Liu et al., 2019).

Schema Guided Dialogue - This dataset
covers 16 domains and has over 16k annotated
conversations. The domains span a variety of user
actions, including setting calendars and alarms,
travel booking (car rentals, flights, buses and
trains), music, weather, movies, and more. The
dataset also contains multi-domain dialogues
where the utterances switch between domains. For
the purpose of our experiments, we consider only
the single-domain dialogues with 37 intents across
all utterances.

Virtual Assistant Dataset - This dataset
covers 21 domains with 64 intents across all

utterances. As the name suggests, the domains
relate to user queries over a wide range of topics,
including operating smart-home devices, media
consumption, weather and travel. It has over 25k
annotated user utterances that identify intents and
slot values.

3.2 Prompt Template

The prompts that we use for intent classification
have the following format

<v1..vn > utterance intent : canonical

where < v1, v2, .., vn > indicate the virtual to-
kens.

During the training stage of p-tuning, the model
is shown the entire sequence, but the loss is com-
puted only on the answer which in this case is the
predicted canonical form. During inference, the
context to the model includes the sequence until
the word "intent:" and the model completes the
sequence with its prediction for the intent. We use
100 virtual tokens with our prompt-encoder being
an LSTM model with 2 layers.

3.3 Evaluation Method

Intent Classification Evaluating generative mod-
els for a classification task is not straightforward.
This is further complicated by the fact that our
model generates a canonical form identifying the
intent of a given user utterance. We propose two
methods to cast this generation problem to a classi-
fication setting. The difficulty arises from the fact
that generated sequences very often differ from the
exact gold truth sequence that the model sees as
part of training. We utilize two approaches based
on associating the generated canonical form to its
closest label, i.e., a nearest neighbor search. Once
the canonical form label has been identified as the
prediction, it becomes trivial to compute the clas-
sification accuracy. Since we already have a one-
to-one mapping between canonical form labels and
the discrete intent label, we can easily measure the
performance of our model.

• Using Fasttext Embeddings (Bojanowski
et al., 2016): We take the mean of all the
embedding vectors of the generated canonical
form and consider the vector obtained to be
the representation of the whole sequence. We
compute similar vectors for all the canonical
form labels and consider the canonical form
label that has the maximum cosine similarity
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with the generated one as the model’s predic-
tion.

• Using Sentence Transformers (Reimers and
Gurevych, 2019): We use the miniLM-QA
(Wang et al., 2020) transformer model that
has been pretrained on multiple datasets
on the text entailment/semantic search task,
i.e., given a query and a set of keys (docu-
ments/labels), it ranks the keys in order of
relevance. We give as input to the model the
generated canonical form (query) and the list
of canonical form labels (keys). The model
then returns the closest canonical form label
to the generated canonical form which we con-
sider as the prediction.

3.4 Baselines
We consider the following baselines for the intent
classification task.

• BERT-based finetuned model (Intent Clas-
sification): We finetune BERT models on
the datasets described in section 3.1. While
some of the Megatron-GPT models we use
are larger than the BERT model in terms of
number of parameters, it should be noted that
the LM parameters are frozen during the train-
ing stage of p-tuning and only the weights of
the LSTM ( 14M parameters) are updated.

3.5 Evaluation Settings
We evaluate the performance of our model in two
settings: in-domain and out-of-domain.

3.5.1 In-Domain
This setting corresponds to the traditional dataset
splits where the train and test sets come from sim-
ilar distributions. We p-tune the Megatron-GPT
models on the train set and evaluate them on the
test set for intent classification.

3.5.2 Out-of-Domain
In this setting, we aim to explore the generalization
capability of LLMs. We hold out certain domains
from the train set and use utterances from the held
out domains as our test. This helps us understand
how well these LLMs can generalize to unseen
domains. The held out sets that we consider are:

• Schema Guided Dialogue (SGD): We hold
out utterances corresponding to bus bookings
and hotel reservations to form our test set.

The train set includes utterances from adja-
cent domains: flight booking and restaurant
reservations. This should be a relatively easy
setting for the language model to generalize
to.

• Virtual Assistant: To make things more chal-
lenging, we hold out utterances corresponding
to operating IOT devices and media consump-
tion commands (e.g., commands that are vari-
ants of "play" - play movie, play audiobook).
The train set does not have utterances from
similar domains and this setting is more chal-
lenging for the model.

We consider the generalization capability of the
model in two modes:

• Zero-shot: P-tune the model on the train set
and evaluate zero-shot on the unseen domain
test set.

• Few-shot: After p-tuning on the train set, we
do a second stage p-tuning on a set of k sam-
ples from the target domain. Unless otherwise
noted, k here is 5, 10, 50 or 100 samples.

The few-shot paradigm may be very useful for
dialogue system developers in a limited-resource
setting. Developers can implement new domains
using existing language models and a small set
of curated examples, without the burden and ex-
pense of retraining or providing a large number of
labelled samples.

4 Results

In this section, we review the quantitative perfor-
mance of the models for intent classification.

4.1 Intent Classification

We compute and list the accuracy of the baselines
and our p-tuned GPT model in identifying the in-
tent given the user utterance.

4.1.1 In-domain
We find that both the p-tuned GPT model as well
as the BERT baseline perform very well on the
standard in-domain split where both the train and
test set come from the same distribution (Table
2). The classification accuracy of Megatron-GPT
increases as we increase the model size. The trend
of results remains consistent for both the SGD and
Assistant datasets.
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Model SGD Assistant

BERT-Large 0.88 0.91

Megatron-GPT - 345M 0.87 0.88
Megatron-GPT - 1.3B 0.91 0.92
Megatron-GPT - 5B 0.95 0.94

Table 2: Classification Accuracy on test sets of the SGD
and Assistant datasets

4.1.2 Out-of-Domain
The out-of-domain setting is where the advantage
of using a LLM becomes apparent. It is not feasible
to expect a finetuned BERT model to generalize
to an unseen domain not present in the train set.
Such models continue to predict that the intent
belongs to one of the intent labels they see during
training. The p-tuned Megatron-GPT models, on
the other hand, show impressive zero-shot and few-
shot generalization capabilities on the SGD dataset
(Table 3). For instance, having seen intents such as
"buy flight roundtrip tickets" when presented with
utterances for Flight Reservations in training, we
can expect the model to reasonably generalize to
utterances from Bus Reservations with utterances
like "Get me a return trip on the bus" with the
model’s prediction for the intent being "buy bus
roundtrip tickets".

Mode Bus Booking Hotel Reservation

345M 1.3B 5B 345M 1.3B 5B

Zero Shot 0.755 0.762 0.787 0.379 0.448 0.467
FS - 10 samples 0.907 0.789 0.942 0.793 0.720 0.939
FS - 50 samples 0.953 0.965 0.975 0.957 0.968 0.970

Table 3: Zero-shot and Few Shot (FS) performance on
the held out domains of the SGD dataset. The columns
indicate the size of the Megatron-GPT model.

In the Assistant dataset, the p-tuned models face
the same issue as the BERT models: they struggle
to generalize to completely unseen domains and the
performance is close to random (Table 4). Unlike in
SGD, the held-out domains do not have sufficiently
similar domains in training from which to general-
ize. However, the few-shot setting holds promise as
the performance of the models improves with few
samples. Since the held out domains have far more
intents compared to the held out domains from the
SGD dataset, we employ stratified sampling to en-
sure that the few-shot examples are representative
of all intents in the domain.

Mode IOT devices Media Consumption

345M 1.3B 5B 345M 1.3B 5B

Zero Shot 0.096 0.011 0.022 0.037 0.008 0.012
FS - 10 samples 0.62 0.71 0.75 0.58 0.62 0.68
FS - 50 samples 0.69 0.83 0.87 0.67 0.86 0.89

Table 4: Zero-shot and Few Shot (FS) performance
on the held out domains of the Assistant dataset. The
columns indicate the size of the Megatron-GPT model.

5 Discussion

The results on zero-shot and few-shot settings for
unseen domains demonstrate that p-tuning a LLM
to have intents that are more verbose than discrete
labels can be very helpful.

In this section, we analyze the impact of the
structure of canonical forms, what helps the lan-
guage model generalize, how sample efficient are
these language models and what all this means for
a developer of chatbots and dialogue systems.

5.1 How important is framing the right
canonical form?

The phrasing of canonical forms has a signifi-
cant impact on zero-shot cross domain general-
ization. In our initial experiments, we observed
that the language models, especially the smaller
ones, sometimes rely on spurious correlations to
predict the intent. For instance, if the intent Search-
FlightOneWay is mapped to the canonical form
search tickets for flight one way, the model corre-
lates the word ticket in both the user utterance and
canonical form to identify the intent. When we use
this model to predict the intent of user utterances
related to bus bookings in a zero-shot manner, the
model predicts that that the intent is related to a
flight booking as most utterances in the bus domain
contain the word ticket.

Mode Accuracy

345M 1.3B 5B

ZS - Original 0.08 0.13 0.21
ZS - Modified 0.755 0.762 0.787

Table 5: Zero shot (ZS) performance on utterances from
Bus Bookings. Original refers to having the canonical
form for flight bookings as search tickets for flight one
way which led to incorrect generalizations. Modified
refers to having the improved canonical form for flight
bookings as search for flights one way.

Rephrasing the canonical form for the intent
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SearchFlightOneWay to search for flights one way
helps the model to avoid making the spurious corre-
lation and the performance in the zero-shot setting
(Table 5) is significantly improved.

Mode Accuracy

345M 1.3B

ZS - Original 0.08 0.13
FS 10 samples- Original 0.76 0.72
FS 20 samples - Original 0.84 0.87

Table 6: Zero shot (ZS) performance on utterances from
Bus Bookings. Original refers to having the canonical
form for flight bookings as search tickets for flight one
way which led to incorrect generalizations. Adding a
small number of examples resolves the error.

However, the few-shot setting (Table 6) allevi-
ates this problem of sensitivity of the model to the
canonical form structure. When we provide the
model with a few samples from the the target do-
main, it learns to associate that the important words
to distinguish between the domains are flight and
bus and not ticket.

5.2 What do good canonical forms looks like?
Based on our experiments, a set of good canonical
forms has the following properties:

• Similarity in structure: Use similar verbs for
similar actions/domains, e.g., book a flight,
book bus tickets, search for hotels, search
for restaurant reservations.

• Compositional: Using similar structures for
canonical forms in similar domains naturally
lends to compositionality. This makes it eas-
ier for the model to generalize in the zero-
shot/few-shot setting while still allowing the
developers to easily map the generations to a
supported service on the backend.

• Looks like natural language: Since LLMs
are pretrained on very large corpora of natural
language, the benefit of pre-training is realized
when the canonical forms resemble natural
language rather than complex semantic forms.
Making discrete intents look more like typical
verb phrases brings out the expressive nature
of language models.

Future work will explore and refine methods to
automate the creation of canonical forms.

5.3 Do we need the entire training set for
p-tuning?

We look for the fewest labelled samples for p-
tuning needed to get an accuracy close to accessing
the entire train set. We randomly sample k samples
per intent (k ∈ 5, 10, 20, 30) to form the train set
the model is p-tuned on, and evaluate on the same
test set as above. The train and test sets are from
the in-domain setting for both SGD (Table 7) and
Assistant (Table 8) datasets.

#Samples/Intent Train Size Accuracy

345M 1.3B 5B

10 370 0.77 0.81 0.827
20 740 0.82 0.83 0.844
30 1110 0.84 0.85 0.87

Table 7: Accuracy on the SGD test set when using only
k samples per intent. The columns indicate the size of
the Megatron-GPT model used.

#Samples/Intent Train Size Accuracy

345M 1.3B 5B

10 640 0.69 0.81 0.84
20 1280 0.74 0.84 0.91
30 1920 0.79 0.87 0.91

Table 8: Accuracy on the Assistant test set when using
only k samples per intent. The columns indicate the size
of the Megatron-GPT model used.

5.3.1 Comparison with BERT
We observe that Megatron-GPT is more sample
efficient than BERT-type models, even when ad-
justing for the number of parameters. We use the
345M parameter version of the Megatron-GPT for
a fair comparison. We finetune BERT-Large and
p-tune the GPT model on the same training subset
of the SGD dataset. Results are shown in Table 9.

With a small number of samples (10 per intent),
both Megatron-GPT and BERT-Large have very
similar performance. But with small increases in
the number of labelled samples per intent in the
train set, we observe that the performance of the
GPT model improves faster than the BERT model.

5.4 What does this mean for dialogue system
developers?

Task-oriented dialogue systems are challenging to
create. Most common frameworks cast utterances
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#Samples/Intent Accuracy

345M BERT

10 0.77 0.75
20 0.82 0.767
30 0.84 0.773

Table 9: Accuracy on the SGD test set when using only k
samples per intent. MegatronGPT-345M is more sample
efficient than BERT-Large.

into discrete intents and slots, but it is often not
clear how to define these concepts for a given de-
sign. Such frameworks also employ NLU models
that often require the creation of either rule-based
grammars or a significantly large corpus of labelled
samples. While ML-based approaches have come
a long way, distributional shifts in the way utter-
ances are structured can degrade performance. By
leveraging LLMs, our approach reduces the ef-
fort involved in framing intents and training classi-
fiers. Because of the flexibility in canonical form
schemas and the sample efficiency of p-tuning, we
argue that development of new task-oriented dia-
logues becomes simpler and faster. We envision a
setting where a model publisher trains and releases
a general-purpose p-tuned language model cover-
ing a broad set of cases. A conversation designer
may then write a small set of example queries, sub-
mit a brief p-tuning job, and deploy a new applica-
tion with minimal cost.

6 Conclusion

We explore the use of Large Language Models and
p-tuning for intent classification in task-oriented
dialogue systems. We show framing intent labels
into more verbose forms allows LMs to exploit the
underlying structure better and exhibit impressive
zero-shot and few-shot generalization. We also
analyze how important the phrasing of the verbose
forms are and how many samples are needed to
get good quantitative performance. We hope that
this work on using sample efficient LLMs serves to
motivate further research in making ToD systems
simpler and quicker to develop.
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Abstract

Detecting Out-of-Domain (OOD) or unknown
intents from user queries is essential in a task-
oriented dialog system. Traditional softmax-
based confidence scores are susceptible to the
overconfidence issue. In this paper, we propose
a simple but strong energy-based score function
to detect OOD where the energy scores of OOD
samples are higher than IND samples. Further,
given a small set of labeled OOD samples, we
introduce an energy-based margin objective for
supervised OOD detection to explicitly distin-
guish OOD samples from INDs. Comprehen-
sive experiments and analysis prove our method
helps disentangle confidence score distributions
of IND and OOD data.1

1 Introduction

Detecting Out-of-Domain (OOD) or unknown in-
tents from user queries is crucial to a task-oriented
dialog system (Akasaki and Kaji, 2017; Tulshan
and Dhage, 2018; Shum et al., 2018; Lin and Xu,
2019; Xu et al., 2020; Zeng et al., 2021a; Wu et al.,
2022b). It can avoid performing wrong operations
and provide potential directions of future develop-
ment when an input query falls outside the range
of predefined intents. Since the exact number of
unknown intents in practical scenarios is hard to
know and annotate, the lack of real OOD examples
makes it challenging to identify these samples in
dialog systems.

Depending on whether labeled OOD samples
are available, previous OOD detection work can be
generally classified into two types: unsupervised
(Bendale and Boult, 2016; Hendrycks and Gim-
pel, 2017; Shu et al., 2017; Lee et al., 2018; Ren
et al., 2019; Lin and Xu, 2019; Xu et al., 2020;

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1Our code is available at https://github.com/
pris-nlp/EMNLP2022-energy_for_OOD/.

1. Can you give me a meal suggetion from the sourth

2. Give me a suggetion for roofers

Ground Truth Softmax Pred

meal_suggetion meal_suggetion

OOD meal_suggetion

Case

Figure 1: IND (case 1) vs OOD sample (case 2). Soft-
max score recognizes OOD sample as IND intent type
because of overconfidence issue.

Figure 2: Softmax score from MSP vs energy score
from our method. Softmax score are similar for IND
and OOD (both > 0.85) but energy score are more
distinguished.

Zeng et al., 2021a,b; Wu et al., 2022a) and super-
vised (Fei and Liu, 2016; Kim and Kim, 2018; Lar-
son et al., 2019a; Zheng et al., 2020). The former
firstly learn an in-domain (IND) intent classifier
only using labeled IND data and then estimates the
confidence score of a test query. For example, Max-
imum Softmax Probability (MSP) (Hendrycks and
Gimpel, 2017) uses maximum softmax probability
as the confidence score and regards an intent as
OOD if the score is below a fixed threshold. The
assumption is that OOD intents should produce a
lower softmax probability than INDs. However,
neural networks can produce arbitrarily high soft-
max confidence even for such abnormal OOD sam-
ples (Guo et al., 2017; Liang et al., 2018), as shown
in Fig 1&2, which we call overconfidence. Further,
another distance-based method, Gaussian discrimi-
nant analysis (GDA) (Xu et al., 2020), is proposed
to use the maximum Mahalanobis distance (Maha-
lanobis, 1936) to all in-domain classes centroids as
the confidence score. Compared to MSP, GDA gets
better OOD performance but requires expensive
computation for complex Mahalanobis distance.
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Figure 3: The overall architecture of our proposed method.

In this paper, we aim to use simple softmax con-
fidence scores for both higher performance and
efficiency. For supervised OOD detection, Fei and
Liu (2016); Larson et al. (2019a), form a (N+1)-
class classification problem where the (N+1)-th
class represents the OOD intents. Further, Zheng
et al. (2020) uses labeled OOD data to generate
an entropy regularization term. But these methods
require numerous labeled OOD intents to get supe-
rior results. We focus on using fewer labeled OOD
data (like 20 or 30) to achieve comparable even
better performance.

In this paper, we propose an energy-based score
function to detect OOD in an unsupervised manner.
The energy-based score function maps each query
to a single energy scalar which is lower for IND
samples and higher for OOD samples based on the
energy theory (LeCun et al., 2006). We first train
an in-domain intent classifier via IND data, then
replace the original softmax layer with the energy-
based score function. Our method can not only mit-
igate the issue of overconfident softmax probability
but also reduce expensive post-processing compu-
tation. Further, given a small portion of labeled
OOD samples, we propose an energy-based margin
objective to explicitly distinguish OOD samples
from IND samples. Our contributions are three-
fold: (1) We propose an energy-based learning
method for OOD intent detection to achieve higher
performance and efficiency. (2) We propose an
energy-based margin objective to distinguish en-
ergy distributions of OOD and IND samples. (3)
Extensive experiments and analysis on two bench-
marks demonstrate the effectiveness of our method.

2 Methodology

Overall Architecture Fig 3 (a) shows the overall
architecture of our proposed method. We first train

an in-domain intent classifier using IND data in
training stage. Then in the test stage, we extract
the intent feature of a test query and employ the
detection algorithms MSP (Hendrycks and Gimpel,
2017) or Energy to detect OOD. Fig 3 (b) demon-
strates the effectiveness of our method distinguish-
ing OOD distributions from IND2.

Energy-based Score Function To mitigate the
issue of overconfident softmax probability in MSP,
we propose an energy-based score function to push
apart score distributions of OOD and IND sam-
ples. We first briefly review the energy theory
(LeCun et al., 2006) then explain our proposed
energy-based score function for OOD detection.
The previous energy work (LeCun et al., 2006;
Zhai et al., 2016; Grathwohl et al., 2020; Liu et al.,
2020b; Kaur et al., 2021) aims to build a function
E(x) : RD → R which maps a sample x to a
single scalar called the energy. Given a data point
x ∈ RD, the energy function can be defined as
follows:

E(x) = −T · log
∫

y′
e−E(x,y′)/T (1)

where T is the temperature parameter and E(x, y′)
is the marginal energy over label y′. Essentially,
energy scores can be transfered to the likelihood
probability:

p(y | x) = e−E(x,y)/T

∫
y′ e

−E(x,y′)/T
=

e−E(x,y)/T

e−E(x)/T
(2)

For OOD detection, since we focus on the detec-
tion algorithms for the test stage in this paper, we
train the same BiLSTM in-domain intent classifier

2Because the max softmax score is higher for IND sam-
ples and lower for OOD samples, we use the negative energy
score to align with the conventional definition where positive
(IND) samples get higher scores.
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Models
CLINC-Full CLINC-Small

IND OOD IND OOD
Acc F1 Recall F1 Acc F1 Recall F1

Unsupervised
OOD

MSP (Hendrycks and Gimpel, 2017) 87.16 87.64 41.40 44.86 85.02 85.18 35.81 36.60
LOF (Lin and Xu, 2019) 85.87 86.08 58.32 59.28 82.83 82.98 53.96 54.63
GDA (Xu et al., 2020) 86.83 87.90 64.14 65.79 84.46 84.87 60.72 61.89
SCL (Zeng et al., 2021a) 87.01 88.28 66.80 67.68 85.73 86.61 63.96 64.44
Energy (Ours) 88.71 89.17 68.10 69.64 86.42 86.48 65.78 66.52

Supervised
OOD

N+1 91.24 85.29 24.51 31.08 90.13 83.23 21.50 29.17
MSP+Entropy (Zheng et al., 2020) 87.48 87.81 49.90 53.93 85.24 85.31 45.90 48.57
MSP+Bound (Liu et al., 2020a) 88.03 87.26 45.21 56.86 86.16 83.04 42.38 51.43
MSP+Margin (Ours) 88.31 87.98 57.27 59.96 85.33 85.37 54.90 55.37
LOF+Entropy 85.98 86.37 61.10 61.13 83.49 83.86 57.70 57.79
LOF+Bound 86.36 85.66 57.83 60.15 81.36 82.88 64.41 59.30
LOF+Margin (Ours) 86.13 86.59 65.70 65.59 83.57 83.97 63.60 63.18
GDA+Entropy 87.27 88.14 68.53 68.82 85.01 85.53 65.22 65.65
GDA+Bound 87.09 86.86 67.32 66.41 84.44 84.75 65.19 64.14
GDA+Margin (Ours) 87.54 88.23 68.42 68.73 85.51 85.81 65.13 65.68
Energy+Margin (Ours, Full Model) 89.75 89.46 73.92 74.06 87.84 87.53 72.76 72.98

Table 1: Performance comparison on CLINC-Full and CLINC-Small datasets (p < 0.01 under t-test).

f(x) via IND data as Lin and Xu (2019) in the
training stage. Then given a test query, we simply
use the logits from the intent classifier to represent
E(x, y′). Therefore, the energy score function Eq
1 can be formulated as:

E(x; f) = −T · log
K∑

i

efi(x)/T (3)

where K is the size of IND intent classes and fi(x)
is the logit of x belonging to i-th class. We simply
use a threshold on the energy score to consider
whether a test query belongs to OOD. Intuitively,
the reason why the energy score works for OOD
detection is that higher energy represents a lower
likelihood of occurrence according to LeCun et al.
(2006). Therefore, unobserved OOD samples in
the training stage should get lower likelihoods as
well as higher energy scores than observed IND
samples. In Appendix C, we provide a detailed
theoretical derivation of why the energy function
can alleviate the overconfidence problem. Besides,
Experiment 4.1 also proves energy scores better
distinguish confidence distribution of OOD data
from IND data than softmax probabilities.

Energy-guided Margin Objective To further
distinguish OOD from IND, we propose an energy-
guided margin objective for few-shot supervised
OOD detection. Different from Liu et al. (2020a),
our approach directly models the energy bound-
ary by pushing apart the samples from IND and
OOD, which helps recognize OOD intents near
the decision boundary and is easier to tune and
less sensitive to the noise. Specifically, we use an
energy-based max-margin loss as well as the stan-
dard cross-entropy loss to explicitly set an energy

CLINC Full Small
Avg utterance length 9 9
Intents 150 150
Training set size 15100 7600
Training samples per class 100 50
Training OOD samples amount 100 100
Development set size 3100 3100
Development samples per class 20 20
Development OOD samples amount 100 100
Testing Set Size 5500 5500
Testing samples per class 30 30
Development OOD samples amount 1000 1000

Table 2: Statistics of the CLINC datasets.

gap between OOD and IND. We aim to learn more
discriminative representations for energy score dis-
tributions in the training stage. The energy margin
loss is formulated as:

L=E(xind,xood)∼D max(0,m+E(xind)−E(xood))

(4)

where m is the energy margin and E is the en-
ergy score of IND or OOD samples in train set.
Then in the test stage, we still use the energy score
to detect OOD. Analysis 4.1 displays the effective-
ness of the margin loss over unsupervised OOD.

3 Experiments

3.1 Datasets
We use two public benchmark OOD datasets3,
CLINC-Full and CLINC-Small (Larson et al.,
2019b). We show the detailed statistic of these

3https://github.com/clinc/oos-eval
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Figure 4: Distribution of softmax scores vs energy scores.

datasets in Table 2. They both contain 150 in-
domain intents across 10 domains. The difference
is that CLINC-Small has fewer in-domain train-
ing examples than CLINC-Full. Note that all the
datasets we used have a fixed set of labeled OOD
data but we don’t use it for training.

3.2 Metrics

We report both OOD metrics: Recall and F1-score
(F1) and in-domain metrics: F1-score (F1) and
Accuracy (ACC). Since we aim to improve the per-
formance of detecting out-of-domain intents from
user queries, OOD Recall and F1 are the main eval-
uation metrics in this paper.

3.3 Baselines

For detection algorithms, we use MSP, LOF and
GDA as baselines. For training objectives, we use
N+1, entropy and bound as baselines. We present
dataset statistics, baselines and implementation de-
tails in the appendix. We will release our code after
blind review.

3.4 Main Results

Table 1 shows the main results. (1) For unsuper-
vised OOD detection, using the energy function
achieves 24.78, 10.36, 3.85, 1.96 OOD F1 im-
provements over MSP, LOF, GDA and SCL on
CLINC-Full. The results prove the effectiveness
of energy score function for OOD detection. Be-
sides, for IND metrics, energy function also outper-
forms SCL by 0.89% (F1), which reflects energy
scores can better distinguish OOD from IND sam-
ples without sacrificing IND performance. (2) For
supervised OOD detection, we compare different
pre-training losses under the same detection score
function. We find our Margin approach achieve
consistent improvements under different detection
functions on both datasets. It demonstrates that

Figure 5: Unsupervised vs supervised OOD detection.

Margin objective can stably improve the represen-
tation space by directly pushing apart the samples
from IND and OOD. We also observe under MSP,
our proposed Margin objective outperforms En-
tropy by 6.03% and Bound by 3.10% on CLINC-
Full. But on GDA we find no significant perfor-
mance difference. We argue the energy-based learn-
ing may not always fit in generative distance-based
detection methods like GDA. Overall, combining
energy score function and margin objective achieve
the best performance over the previous state-of-the-
art by 5.24%.

4 Analysis

4.1 Distribution of softmax scores vs energy
scores

To figure out why energy scores outperform soft-
max scores, we compare the score histogram distri-
butions for IND and OOD data in Fig 4. We use the
same pre-trained intent classifier to compute scores
on the test set. We find softmax scores for both
IND and OOD data concentrate on high values,
resulting in severe overconfidence. By contrast,
energy scores better distinguish score distribution
of OOD data from IND data. And energy distribu-
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Figure 6: Effect of number of labeled OOD samples.

tions are smoother than softmax score distributions.
Overall, our proposed energy-based score function
can disentangle confidence score distributions for
IND and OOD data.

4.2 Unsupervised vs supervised OOD
detection

To verify the effectiveness of our proposed energy-
based margin objective, we compare the energy
score statistics of unsupervised (Energy) and su-
pervised (Margin+Energy) OOD detection in Fig
5. Each rectangle in Fig 5 represents the energy
distribution of IND or OOD data, where the middle
of the rectangle is energy mean and the width of
the rectangle is energy variance. Results show that
compared to Energy, Margin+Energy makes neg-
ative energy scores of both OOD and IND data
smaller. Further, the supervised Margin objec-
tive can significantly decrease the variance of both
OOD (1.86 ↓) and IND (3.11 ↓) data. Therefore,
Margin can push apart energy score distributions
for OOD detection by shrinking its variance to
avoid overlapping. Besides, combined with the
energy threshold (dot line in Fig 5), unsupervised
(Energy) still gets a portion of OOD samples above
the threshold which are misclassified into IND, but
supervised (Margin+Energy) on the opposite. It
proves that Margin can further mitigate the issue
of overconfidence.

4.3 Effect of number of labeled OOD samples

Fig 6 shows the effect of labeled OOD train-
ing data size for supervised OOD detection. We
find Margin+Energy consistently outperforms En-
tropy+Energy, especially in the few-shot super-
vised OOD scenario, which demonstrates strong ro-
bustness and generalization of our proposed energy-
based margin objective for OOD detection.

Figure 7: Effect of energy temperature T

Figure 8: Effect of energy margin m

4.4 Effect of Parameters

Temperature T . Fig 7 shows the effect of differ-
ent energy temperature T . We conduct the exper-
iments on the CLINC-Full dataset, using Energy
for unsupervised OOD. The X-axis denotes the
value of temperature T . In general, T ∈ (0.5, 1.0)
achieves relatively better performances and has a
broad range.

Margin m. Fig 8 shows the effect of differ-
ent energy margin m. We conduct the exper-
iments on the CLINC-Full dataset, using Mar-
gin+Energy for supervised OOD. The X-axis de-
notes the value of margin m. Results show that
m = 19.0 achieves the best performance and is
robust to minor changes.

5 Conclusion

Traditional softmax-based OOD detection methods
are susceptible to the overconfidence issue. There-
fore, we propose a novel energy-based score func-
tion to mitigate the issue of softmax overconfidence.
To use labeled OOD data, we further introduce an
energy-based margin objective to explicitly distin-
guish energy score distributions of OOD from IND.
Experiments and analysis confirm the effectiveness
of our energy-based method for OOD detection.
For future work, we hope to explore theoretical
concepts of energy and provide new guidance.
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A Baseline Details

We perform main experiments based on two dif-
ferent settings, unsupervised OOD and supervised
OOD detection. For unsupervised OOD detection,
we compare our proposed energy detection algo-
rithm with other methods, MSP (Maximum Soft-
max Probability) (Hendrycks and Gimpel, 2017),
LOF (Local Outlier Factor) (Lin and Xu, 2019),
GDA (Gaussian Discriminant Analysis) (Xu et al.,
2020). For supervised OOD detection, we also
compare our proposed energy-based margin ob-
jective with entropy (Zheng et al., 2020) and N+1
(Fei and Liu, 2016; Larson et al., 2019a). Note
that margin and entropy objectives are used in the
training stage, we still need detection algorithms
MSP, GDA or Energy to detect in the test stage. We
supplement the relevant baseline details as follows:
MSP (Maximum Softmax Probability) (Hendrycks
and Gimpel, 2017) uses maximum softmax proba-
bility as the confidence score and regards an intent
as OOD if the score is below a fixed threshold.
LOF (Local Outlier Factor) (Lin and Xu, 2019)
uses the local outlier factor to detect unknown in-
tents. The motivation is that if an example’s lo-
cal density is significantly lower than its k-nearest

neighbor’s, it is more likely to be considered as the
unknown intents.
GDA (Gaussian Discriminant Analysis) (Xu et al.,
2020) is a generative distance-based classifier
for out-of-domain detection with Euclidean space.
They estimate the class-conditional distribution on
feature spaces of DNNs via Gaussian discriminant
analysis (GDA) to avoid over-confidence problems
and use Mahalanobis distance to measure the con-
fidence score of whether a test sample belongs to
OOD. GDA is the state-of-the-art detection method
till now, our proposed energy score still signifi-
cantly outperforms GDA.

Note that LOF and GDA both require additional
post-processing modules to estimate density or dis-
tance, which induces expensive computation. We
conduct a performance comparison for inference
time in Table 3. Since SCL only adds a pre-training
loss along with CE and also uses GDA for detec-
tion, the inference time is equal to GDA.

Detect Method Inference time
MSP 1.00x
Energy (Ours) 1.00x
GDA/SCL 30.63x
LOF 30.89x

Table 3: Inference time comparison between different
methods.

SCL (Zeng et al., 2021a) uses a supervised con-
trastive learning objective to minimize intra-class
variance by pulling together in-domain intents be-
longing to the same class and maximize inter-class
variance by pushing apart samples from different
classes. Note that SCL still needs a confidence
score function. To keep fair comparison, we follow
the original paper using GDA detection method.
N+1 (Fei and Liu (2016); Larson et al. (2019a)) is
an N+1 classification model which simply consid-
ers OOD samples as a new class.
Entropy (Zheng et al. (2020)) uses labeled OOD
data to generate an entropy regularization term to
enforce the predicted distribution of OOD inputs
closer to the uniform distribution:

L= E(xood)∼D[−H(pθ(y|xood))] (5)

where H is the Shannon entropy of the predicted
distribution. pθ(y|xood) is the predicted distribu-
tion of the input OOD utterance xood.
Bound (Liu et al. (2020b)) uses a regularization
loss defined in terms of energy to further widen the
energy gap:
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L=E(xind)∼D max(0, E(xind)− mind))
2

+E(xood)∼D max(0,mood − E(xood)))
2

(6)

where E is the energy score of IND or OOD sam-
ples in the train set. This learning objective using
two squared hinge loss with two hyper-parameters
mind and mood. Note that Bound aims at OOD im-
age classification and replies on two independent
energy bounds. Instead, our proposed Margin con-
structs a contrastive energy margin between IND
intents and OOD intents to better disentangle en-
ergy distributions.

B Implementation Details

We use the public pre-trained 300 dimensions
GloVe embeddings (Pennington et al., 2014)4 to
embed tokens. We use a two-layer BiLSTM as
a feature extractor and set the dimension of hid-
den states to 128. The dropout value is fixed at
0.5. We use Adam optimizer (Kingma and Ba,
2014) to train our model. We set the learning
rate to 1E-03. In the training stage, we use stan-
dard cross-entropy loss for unsupervised OOD and
cross-entropy+energy-guided margin loss for super-
vised OOD. Besides, in supervised OOD scenario,
we employ restriction-oriented random sampling.
Specifically, we guarantee that IND and OOD sam-
ples are both included in each batch to facilitate
calculation of margin loss. We both set the training
epoch up to 200 with a early stop of patience 15.
For our proposed energy-guided margin loss, we
set the margin m to 19.0 and the temperature T to
0.8. We use the best OOD F1 scores on the valida-
tion set to calculate the threshold adaptively. Each
result of the experiments is tested 5 times under the
same setting and gets the average value. The train-
ing stage of our models lasts about 2 minutes for
unsupervised OOD and 4 minutes for supervised
OOD both on a single Tesla T4 GPU (16 GB of
memory). The average value of the trainable model
parameters is 3.05M. We will release our code after
blind review.

C A Theoretical Proof of Energy Score vs
Softmax Score

In this section, we give a theoretical proof of why
energy score outperforms softmax score. Suppos-
ing we get the output logits from the intent classi-

4https://github.com/stanfordnlp/GloVe

fier, we represent MSP as follows:

log MSP(logits) = log max softmax (logits)

= log max
exp(logitsi)∑
i exp(logitsi)

= log
exp max(logits)∑

i exp(logitsi)

= max(logits)− log sum exp(logits)
(7)

where logitsi represents the i-th value in the vector
logits. Recap the energy definetion:

E(x; f) = −T · log
K∑

i

efi(x)/T (8)

Here we set T to 1. Therefore, we get the following
equation:

logMSP(logits) = max(logits)︸ ︷︷ ︸
regularization item

+Energy(logits)

(9)
If the output logits get a high max value, then
max(logits) performs as a regularization item to
avoid energy score increasing. Therefore, energy
score can better mitigate the overconfidence issue
than softmax score.
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Abstract

Recent advances in neural approaches greatly
improve task-oriented dialogue (TOD) systems
which assist users to accomplish their goals.
However, such systems rely on costly manually
labeled dialogs which are not available in practi-
cal scenarios. In this paper, we present our mod-
els for Track 2 of the SereTOD 2022 challenge,
which is the first challenge of building semi-
supervised and reinforced TOD systems on a
large-scale real-world Chinese TOD dataset
MobileCS. We build a knowledge-grounded
dialog model to formulate dialog history and
local KB as input and predict the system re-
sponse. And we perform semi-supervised pre-
training both on the labeled and unlabeled data.
Our system achieves the first place both in the
automatic evaluation and human interaction, es-
pecially with higher BLEU (+7.64) and Success
(+13.6%) than the second place.1

1 Introduction

Task-oriented dialogue (TOD) systems assist users
to accomplish their goals like booking a ticket and
make an effect on everyone’s lives with recent ad-
vances in neural approaches (Gao et al., 2018). A
typical TOD system consists of three sub-modules:
(1) natural language understanding (NLU) for rec-
ognizing the user’s intent and slots (Goo et al.,
2018; Qin et al., 2019; He et al., 2020a; Xu et al.,
2020; He et al., 2020b); (2) dialog management
(DM) for tracking dialog states (Wu et al., 2019;
Gao et al., 2019) and deciding which system action
to take (Peng et al., 2018; Liu et al., 2021); (3)
natural language generation (NLG) for generating
dialogue response corresponding to the predicted
system action (Peng et al., 2020). Traditional mod-
ular methods (Goo et al., 2018; Wu et al., 2019;
Peng et al., 2020) and recent end-to-end modeling

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1Our code, models and other related resources are publicly
available at https://github.com/Zeng-WH/S2KG.

methods (Peng et al., 2021; Su et al., 2022; Liu
et al., 2022a) achieve decent performance in sev-
eral or all modules. However, such systems rely
on costly manually labeled dialogs which are not
available in practical scenarios. It’s valuable to ex-
plore semi-supervised learning (SSL) (Zhu, 2005)
for TOD, which aims to leverage both labeled and
unlabeled data.

To facilitate relevant research, SereTOD 2022
Workshop 2 proposes the first challenge of building
semi-supervised and reinforced TOD systems by
releasing a large-scale Chinese TOD dataset Mo-
bileCS from real-world dialog transcripts between
real users and customer-service staffs from China
Mobile. MobileCS contains 10,000 labeled dialogs
and 90,000 unlabeled dialogs. There are two tracks:
(1) Information extraction (Track 1) aims to extract
entities together with their slot values. (2) Task-
oriented dialog system (Track 2) aims to build a
complete TOD system, including predicting the
user intent, querying the local KB, and generating
appropriate system intent and response according
to the given dialog history. The core challenge is
how to combine a small labeled dataset and a large
unlabeled dataset.

In this paper, we present our system for Track 2
of the SereTOD 2022 challenge. The main intuition
behind our system comes from semi-supervised
knowledge-grounded pre-training on both labeled
and unlabeled datasets. We divide Track 2 into
two task groups, classification (user intent and sys-
tem intent) and generation (system response). For
the classification tasks, we employ Roberta-large 3

and build two separate classification models. We
also perform continual pre-training on all the di-
alog data. For the generation task, we build a
knowledge-grounded dialog model, which is the
key point of this paper. Specifically, we firstly use

2http://seretod.org/
3https://huggingface.co/hfl/chinese-roberta-wwm-ext-

large
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A1: "飞享十八的是吧"U1:"嗯你好你给我办理一个十八块钱的套餐可

以吗"

TRACK2

Input: Conversation context for user and agent

Output: User intention, system intention, generated response

"用户意图":"问候1,被动确认2,询问3,4,主动确认5

"客服意图":主动确认1, 其他2,3,通知4,客套5

生成客服回复：A1，A2，A3，A4，A5

KB
      "ent-1": {

        "name": "这个套餐,十八的这个,飞享十八,十八块钱的套餐",

        "type": "套餐",

        "业务费用": "十八块钱,十八"},
      "ent-2": {

        "name": "套餐,那个套餐",

        "type": "套餐"},
      "ent-3": {

        "name": "流量包",

        "type": "流量包",

        "业务费用": "十块钱"} 

TRACK1

Input：Utterance of the current User or Agent

Output：Annotations of entities and attributes
"ent-1":{

        "name: "十八块钱的套餐,飞享十八,十八的这个,这个套餐"

        "type": "套餐",

        "业务费用": "十八块钱,十八"}
"ent-2":{

        "name": "那个套餐,套餐",

        "type": "套餐"},
"ent-3": {

        "name": "流量包",

        "type": "流量包",

        "业务费用": "十块钱"}

"用户意图": "问候1"

"十八块钱的套餐"："套餐"，("业务费用":"十八

块钱")
"飞享十八"："套餐"，("业务费用":"十八")

"客服意图": "主动确认1"

U2:"噢"

"用户意图": "被动确认2"

A2:"办十八的这个嗯"

"客服意图": "其他2"

"十八的这个"："套餐"，("业务费用":"十八")

U3:"你看够吗_噢那就给我办这个_办这个套餐

吧" A3:"可以"

"用户意图": "询问3" "客服意图": "其他3"

"这个套餐"："套餐"

U4:"那你把那个套餐现在能还能换回来不"
A4:"下个月再打过来办理因为流量包开通是立

即生效的"

"用户意图": "询问4" "客服意图": "通知4"

"那个套餐"："套餐" "流量包"："流量包"

U5:"那就还是以前那个套餐然后给我每个月包

十块钱流量"
A5:"不客气还有其他问"

"用户意图": "主动确认5" "客服意图": "客套5"

"套餐"："套餐"，"流量包"：("业务费用":"十块

钱")

User Agent

Dialogue

Figure 1: An example from MobileCS.

pre-trained language models (e.g. T5 4 and UFA
(He et al., 2022)) as our backbone. Then, we take
the dialog history and serialized local KB 5 as in-
put and output system response. Here, we simply
concatenate each key-value pair in the local KB
as key: value to build a string input. We only use
response generation as the learning objective. For
the labeled dataset, we use the golden KB annota-
tions as our input. For the unlabeled dataset, we
obtain the predicted KB results using our model in
Track 1. Finally, we mix up all the data to train a
knowledge-grounded dialog model.

We summarize the main contributions of our
system S2KG (Semi Supervised Knowledge-
Grounded pre-training) as follows:

• We build a knowledge-grounded dialog model
to formulate dialog history and local KB as
input and predict the system response.

• We perform semi-supervised pre-training both
on the labeled and unlabeled data.

Our system achieves the first place both in the auto-
matic evaluation and human interaction, especially

4https://github.com/ZhuiyiTechnology/t5-pegasus
5A local KB for a dialog could be viewed as being com-

posed of the relevant snapshots from the global KB. Please
see more details in Ou et al. (2022).

Metric labeled unlabeled
Dialogs 8,975 87,933
Turns 100,139 972,573
Tokens 3,991,197 39,491,883
Avg.turns per dialog 11.16 11.06
Avg.tokens per turn 39.86 40.61
Slots 26 -
Values 14,623 -

Table 1: Training dataset statistics of MobileCS. The
challenge also provides another 1,000 labeled dialogs
as evaluation data (dev set).

with higher BLEU (+7.64) and Success (+13.6%)
than the second place.

2 Task Description

MobileCS is a large Chinese TOD dataset collected
from real-world dialog transcripts between real
users and customer-service staffs. Different from
the simulated MultiWOZ dataset (Budzianowski
et al., 2018), it consists of real-life data and large
unlabeled dialogs. Specifically, MobileCS contains
10,000 labeled dialogs and 90,000 unlabeled di-
alogs. The full data statistics are shown in Table 1.
The challenge has two tracks. Track 1 (information
extraction) aims to extract entities and attributes to
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Dialogue History

User Intent 
Prediction Module

System Intent 
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Figure 2: Overall architecture of our knowledge-
grounded task-oriented dialogue system.

build a local knowledge base (KB). And Track 2
uses the KB and raw dialogs to train a complete
TOD system. We provide a real annotated dialog
in Figure 1. In this paper, we focus on Track 2.
Here, we elaborate on the task details. Track 2 for
the TOD system is, for each dialog turn, given the
dialog history, the user utterance and the local KB,
to predict the user intent, query the local KB and
generate appropriate system intent and response
according to the queried information. For every
labeled dialog, the annotations consist of user in-
tents, system intents and a local KB. The local KB
is obtained by collecting the entities and triples an-
notated for Track 1. For unlabeled dialogs, there
are no such annotations.

To measure the performance of TOD systems,
both automatic evaluation and human evaluation
will be conducted. For automatic evaluation, met-
rics include Precision/Recall/F1 score, Success rate
and BLEU (Papineni et al., 2002) score. P/R/F1
are calculated for both predicted user intents and
system intents. Success rate is the percentage of
generated dialogs that achieve user goals. BLEU
score evaluates the fluency of generated responses6.
For human evaluation for different TOD systems,
real users will interact with those systems accord-
ing to randomly given goals. For each dialog, the
user will score the system on a 5-point scale (1-5)
by the following 3 metrics. 5 denotes the best and
1 denotes the worst, respectively.

• Success. This metric measures if the system
successfully completes the user goal by inter-
acting with the user;

• Coherency. This metric measures whether
6The challenge adopts BLEU-4.

RoBERTa

[CLS]⽤户0:唉你好我这咋连不上⽹了 ⽤户1:噢[SEP]

Binary Cross Entropy

C

...

Figure 3: The architecture of the classification models.

the system’s response is logically coherent
with the dialogue context;

• Fluency. The metric measures the fluency of
the system’s response.

The average score from automatic evaluation and
human evaluation is the main ranking basis on the
leaderboard.

3 Methodology

3.1 Overall Architecture
Figure 2 shows the overall system architecture for
Track 2. Track 2 contains three tasks: user intent,
system intent, and system response. For the user
intent and system intent tasks, we use Roberta-
large and build two separate classification mod-
els. For the system response task, we build a
knowledge-grounded dialog model and perform
semi-supervised pre-training both on the labeled
and unlabeled data.

3.2 Subtask 1: Classification
Given a dialog history, the user intent and system
intent tasks aim to predict the user intent or sys-
tem intent(act) respectively. Considering both the
tasks are multi-label, we formulate the tasks as
multi-label text classification questions. As Fig-
ure 3 displays, we adopt Roberta as our backbone
and use the dialog history as input. For the user
intent task, we concatenate two user utterances as
input. We find too many turns bring no further im-
provements and introducing system responses has
a side effect. We suppose the gap between train-
ing and prediction affects the model performance.
For the system intent task, we concatenate three
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Figure 4: The architecture of the generation model.

user utterances as input.7 Then, we use the hid-
den state of the [CLS] token to predict the results.
Binary cross entropy is the learning objective. Sec-
tion 4.3 proves classification models outperform
GPT-based end-to-end models. Besides, we also
introduce some augmentation strategies as follows:

• Continual Pre-training. We pre-train
Roberta on the labeled and unlabeled dialogs
using MLM objective like BERT (Devlin et al.,
2019). We pre-train 20 epochs using a learn-
ing rate of 5e-4 and 15% mask rate. MLM
continual pre-training brings large improve-
ments of 1.68% on User Intent F1 and 1.86%
on System Intent F1.

• Class-wise Threshold. We adaptively select
the best threshold for each intent type based
on the performance on the dev set. This strat-
egy brings improvements of 1.23% on User
Intent F1 and 1.48% on System Intent F1.

• Adversarial Training. We adopt FGM
(Goodfellow et al., 2015) as our adversarial
training strategy. This strategy brings im-
provements of 0.64% on User Intent F1 and
0.46% on System Intent F1.

3.3 Subtask 2: Generation

For the generation task, we build a knowledge-
grounded dialog model, S2KG in Figure 4. Specif-
ically, we firstly use pre-trained language models
(e.g. T5 8 and UFA (He et al., 2022)) as our back-
bone. Then, we take the dialog history and serial-
ized local KB as input and output system response.
Here, we simply concatenate each key-value pair

7The system intent task also requires intent arguments. We
use heuristic rules based on the local KB to match the entities.

8https://github.com/ZhuiyiTechnology/t5-pegasus

in the local KB as key: value to build a string input.
We only use response generation as the learning
objective. We find KB grounding has a large im-
provement over baselines (see Section 4.4).

The SereTOD challenge gives a large-scale
(90,000) unlabeled dataset that doesn’t contain
KB annotations and a relatively small (10,000) la-
beled dataset. So we perform semi-supervised pre-
training to utilize all these dialogs. For the labeled
dataset, we use the golden KB annotations as our
input. For the unlabeled dataset, we obtain the pre-
dicted KB results using our model in Track 1. We
implement our system of Track 1 mainly based on
the official baseline (Liu et al., 2022b). Finally, we
mix up all the data to train a knowledge-grounded
dialog model. We find only using unsupervised pre-
training gets an improvement of 1.91 BLEU, but
drops by 14.6 on Success, because raw response
generation pre-training makes the model memo-
rize similar dialogs but predict unfaithful responses
without grounding ability. Therefore, it’s necessary
to obtain pseudo KB annotations to perform pre-
training. Note that the performance of the Track 1
system is relatively poor so we argue the quality of
pseudo KB makes no significant effect on the final
results. We leave more discussion to future work.

4 Experiment

4.1 Setup

We train our models on the training set and report
our results on the dev set. The final leaderboard
results are evaluated on the test set. Since the test
set is not released until the end of the challenge, we
perform ablation studies only on the dev set. We
conduct our experiments using Huggingface9 and
computation platform JiuTian10.

4.2 Main Results

Table 2 shows the final automatic results on the test
set of the top 5 teams11. Our system (Team 11)
achieves the state-of-the-art on all metrics, espe-
cially for generation task, demonstrating the effec-
tiveness of our proposed S2KG. Specifically, our
method outperforms the second place (Team 5) by
1.4% on User Intent F1 and 0.6% on System Intent
F1. The improvements mainly come from better
pre-trained LM, continual pre-training, class-wise
threshold, and adversarial training. We will dive

9https://huggingface.co/
10https://jiutian.10086.cn/edu/#/home
11See all the results in the official leaderboard.
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Team ID Automatic Evaluation
User Intent F1 System Intent F1 BLEU Success Combined

Team-11 (Ours) 0.728 0.595 14.430 0.780 2.392
Team-5 0.714 0.589 6.790 0.432 1.871
Team-13 0.706 0.587 5.526 0.251 1.655
Team-10 0.664 0.504 3.629 0.217 1.458
Team-8 0.699 0.550 6.440 0.644 2.022
official baseline 0.644 0.394 4.170 0.315 1.436

Table 2: Final automatic results on the test set of the top 5 teams released by the officials. User Intent F1 denotes
the performance of classifying the input user query and System Intent F1 denotes the predicted system acts. Success
rate is the percentage of generated dialogs that achieve user goals. Combined score is the overall result which is
calculated as follows: Combined score = User intent F1 + System intent F1 + Success + BLEU/50.

Methods User Intent F1 System Intent F1
GPT-2 (baseline) 0.6488 0.4012
Roberta 0.7448 0.5158
Roberta+FGM 0.7512 0.5204
Roberta+FGM+Threshold 0.7635 0.5352
Roberta+FGM+Threshold+MLM 0.7803 0.5538

Table 3: Comparison of different user intent and system
intent models on the dev set.

into details in Section 4.3. For generation met-
rics, our S2KG model significantly outperforms
the second place with a large margin of 7.640 on
BLEU and 34.8% on Success. The improvements
are mainly attributed to knowledge-grounded dia-
log model and semi-supervised pre-training, which
are the key points of this paper. We leave the dis-
cussion to Section 4.4.

4.3 Classification

To verify the effect of our proposed models, we
perform an ablation study of different user intent
and system intent models on the dev set in Table
3. GPT-2 is the official baseline (Liu et al., 2022a)
which is an end-to-end generative model based on
Chinese GPT-212. For pre-trained language mod-
els, we find Roberta-based classification models get
better performance with improvements of 9.60%
on User Intent F1 and 11.46% on System Intent
F1. Based on Roberta, we also introduce some
training or inference strategies, including adversar-
ial training FGM, class-wise threshold, and MLM
continual pre-training. All the strategies show ad-
vantages. MLM continual pre-training brings the
largest improvements of 1.68% on User Intent F1
and 1.86% on System Intent F1, demonstrating
the effectiveness of pre-training on domain corpus.
Other strategies also get 0.5-1% improvements.

12https://huggingface.co/uer/gpt2-chinese-
cluecorpussmall

4.4 Generation

Table 5 displays the ablation study of our S2KG
system for the response generation task. We ana-
lyze the results from the following perspectives.

Knowledge Grounding GPT2-FT (finetune) de-
notes the official baseline. GPT2-KGFT is our
proposed knowledge grounding finetuning method
which uses the serialized KB as knowledge. The
first two lines in Table 5 show GPT2-KGFT sig-
nificantly outperforms GPT2-FT by 3.09 BLEU
and 34.8% Success, demonstrating the effective-
ness of knowledge grounding based on local KB.
We also find knowledge grounding improves the
factual consistency of generated responses. We
give examples in Section 5.1.

Semi-Supervised Pre-training The SereTOD
challenge gives a large-scale unlabeled dataset that
doesn’t contain KB annotations. So we perform
different pre-training settings to utilize these unla-
beled dialogs. T5-KGFT is our proposed knowl-
edge grounding model which replaces GPT2 with
T5. Based on T5-KGFT, T5-Unsup-KGFT first
performs an unsupervised response generation pre-
training without KB input and then adopts knowl-
edge grounding finetuning. Results show unsu-
pervised pre-training gets an improvement of 1.91
BLEU, but drops by 14.6 on Success. We argue
it’s because raw response generation pre-training
makes the model memorize similar dialogs but pre-
dict unfaithful responses without grounding abil-
ity. T5-Semi replaces unsupervised pre-training
with semi-supervised pre-training which uses Track
1 system to generate the pseudo local KB for
these unlabeled dialogs. T5-Semi outperforms T5-
Unsup-KGFT by 1.16 BLEU and 17.2% Success,
demonstrating the effectiveness of semi-supervised
pre-training. We also find continual knowledge
grounding finetuning on labeled data (T5-Semi-
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Team ID Human Evaluation Final ScoreFluency Coherency Success Average
Team-11 (Ours) 4.23 3.73 3.47 3.81 3.10
Team-5 4.06 3.14 3.40 3.53 2.70
Team-13 3.55 3.03 2.77 3.12 2.39
Team-10 3.20 2.98 3.11 3.10 2.28
Team-8 2.39 2.29 2.03 2.24 2.13

Table 4: Final human evaluation results on the test set of the top 5 teams released by the officials. Final score is the
average of Combined score from automatic evaluation and averaged human evaluation score. It’s the main ranking
basis on the Track 2 leaderboard.

Methods BLEU Success
GPT2-FT (baseline) 4.39 0.344
GPT2-KGFT 7.48 0.692
T5-KGFT 11.32 0.741
T5-Unsup-KGFT 13.23 0.595
T5-Semi 14.39 0.767
T5-Semi-KGFT 12.30 0.761
UFA-Semi 14.51 0.789

Table 5: Comparison of different system response gen-
eration models on the dev set.

KGFT) can’t bring further improvements upon T5-
Semi because of knowledge forgetting.

Pre-trained Language Model We also com-
pare different PLMs. We find that T5 consistently
achieves better results than GPT-2. Besides, we ex-
periment with a large PLM specified for customer
service, UFA-large (He et al., 2022), which has
1.2B parameters compared to 220M T5 and 117M
GPT-2. UFA-large further outperforms T5 by 0.12
BLEU and 2.2% Success.13

4.5 Human Evaluation
SereTOD performs human evaluation for different
TOD systems, where real users interact with those
systems according to randomly given goals. Table
4 shows the results of human evaluation and final
scores. Our system also achieves state-of-the-art
on all the metrics. Specifically, our method out-
performs the second place (Team 5) by 0.17 on
Fluency, 0.59 on Coherency, and 0.07 on Success.

5 Analysis

5.1 Case Study
Figure 5 shows three examples from the baseline
model and the S2KG model, respectively, prov-

13Considering the inference efficiency and hardware limit,
we submit our final results on T5.

ing the advantages of S2KG model from the three
dimensions of Success, Fluency, and Coherency.

Success In example one, the local KB includes
the user’s mobile package balance and information
about the data package plan currently held by the
user. The user’s utterance is "Could you please
check my data package for me?", which means
the user asks the system to query the mobile pack-
age balance. The baseline system misidentified
the user’s intent and mistakenly believed that the
user was querying the information of the data pack-
age plan, so it retrieved the wrong knowledge "ten
yuan data package plan", thereby generating a re-
ply wrongly. The S2KG model correctly identified
the user’s request, retrieved the correct result based
on local KB, and successfully answered that the
current mobile package balance was 295M in the
reply. It proves that knowledge-grounded semi-
supervised pre-training can greatly improve the
accuracy of knowledge selection.

Fluency In example two, the user’s second round
of utterance is intended to query the date when the
data package cap is exceeded. Since there is no
corresponding information in the current local KB,
the system cannot retrieve the knowledge. In this
scenario, the baseline system repeated meaning-
lessly and failed to generate fluent responses. Due
to the large-scale pre-training, the S2KG model
can explain the situation to the user, guide the user
correctly, and provide the user with a reasonable
solution.

Consistency In example three, the user’s dialogue
history is mainly related to the data package given
by the activity, while the baseline model mainly
answers the user’s current data package in the sec-
ond round of replies, which cannot be consistent
with the dialogue history. The S2KG model has
good modeling of the dialogue history through pre-
training, so it can explain the activity rules to the
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"NA": {
      "用户需求":"查一下我的流量",
       "流量余额": "二百九十五兆" },
"ent-1": {
       "name": "十块钱一百兆",
       "type": "流量包",
       "业务费用": "十块钱",
       "流量总量": "一个G"}}

KB

"用户":"麻烦你帮我查一下我的流量吧"

"Golden客服": "好的请稍等一下",
"Base客服":"好的请您稍等我帮您查询" 
"S2KG客服":"好的,请您稍等,我帮您查询"

"用户": "嗯好"

"Golden客服":"流量呢已经超出扣了二百九十五兆", 
"Base客服":"您好感谢您的耐心等待，
我这边查看了一下您的这个手机上面的话，有一个呃，
一个十块钱的流量包_然后有"
"S2KG客服":"您好,感谢您的耐心等待,我这边查询到您的
流量现在剩了二百九十五兆"

"用户": "二十九十五兆，那那个啥_我开通了多少兆"

Example 1 Example 2

Dialogue

Example 3

"Golden客服": "十块钱一百兆"
"Base客服":"二十九十五兆"
"S2KG客服": "十块钱一百兆"

"NA": {
      "欠费": "欠费了六十多块钱" },
"ent-1": {
      "name": "二十的",
      "type": "流量包",
      "业务费用":"二十,三百兆",
      "套餐外流量计费":"一兆按两毛九收费的
,一兆按两毛九扣费"}}

"用户":"哦_嗯，不是上网，不是那个，嗯_流量不是开通
了吗，七月份的"

"Golden客服": 
"先生您好，流量的话，我这边给您查了一下是_流量，
我这边查了一下，有一个二十的，三百兆，_但是你已
经，你们家的孩子呢，已经用超了六十块钱"
"Base客服":"嗯，您稍等，我帮您查一下" 
"S2KG客服":"您七月份开的是二十的,三百兆的流量,已经
用完了"

"用户":"啊，哟哟哟哟_什么时候用超的啥"

"G o lden客服":"具体时间，我这边看不到的，就是今天
上网的，超出的", 
"Base客服":"您这个月的话，您这个月的话，
您这个月的话，您这个月的话"
“S2KG客服":"具体时间我这边没有显示,先生,您要查一下
详单,我把详单查询方式给您发过来,好吧"

"用户":"哦，哦_哎，它怎么要，这么多来呢，刚开"

"Golden客服":"它是一兆按两毛九收费的，先生"
"Base客服":"嗯，这个是您的基本套餐，然后您的流量
的话，是有一个g的，然后的话呢，是有一个g的流量的
"
"S2KG客服":"一兆按两毛九收费的"

"ent-1": {
      "name": "活动",
      "type": "业务",
      "业务规则":"十二点到二十一点
每整点开始,前一千名首次登陆用户
可获三十兆,首次注册并登陆
10086app的新用户成功注册登陆后即有机会获流量奖励
,每天八点开始前两百名首次登陆可以获一个g,二百零一
到六百名获五百兆"}}

"用户":"噢我问一下我刚才下载了一下客户端么你看我这
个手机现在是不是送流量了"

"Golden客服":"刚刚下载了客户端"
"Base客服":"嗯我看一下您稍等" 
"S2KG客服":"刚刚下载了客户端"

"用户":"噢"

"Golden客服":"现在上面没有看到有赠送的流量呀", 
"Base客服":"嗯_那您这个月的话呢
是有一个一百块钱的流量包_然后呢"
“S 2 K G 客服":"刚刚下载了客户端是给您送流量了它是说
在十二点到二十一点每个整点开始新用户成功注册登陆
后即有机会获得流量奖励每天的八点开始前两百名首次
登陆是可以获一个g"

"用户":"噢他说我下载客户端要送要赠送流量是我怎么操
作我自己操作还是你们那给我弄"

"Golden客服":"嗯这个是您下载客户端的时候赠送的流量
"
"Base客服":"您告我一下您下载了什么是10086那个app
还是什么呢"
"S2KG客服":"呃这个活动的话呢是在十二点到二十一点
每个整点开始 
然后前一千名首次登陆的用户可获得三十兆"

Figure 5: Case study for three examples from Baseline and S2KG system. We present the local KB, the user
utterances, golden response, baseline predictions, and prediction of S2KG system.

user in detail, to meet the user’s intent, and the
generated replies are consistent with the dialogue
history.

5.2 Challenge

Although the S2KG model has achieved SOTA in
the three dimensions of Success, Fluency and Co-
herency, there are still issues unresolved as showed
in Figure 6: (1) Response Diversity: As shown in
example 1, the user wants to figure out the rules
for the user points redemption activity. Although
the system provides the retrieved plan rules, the
user still cannot understand these rules. So the user
asks a question again, then the system repeats the
business rules in the KB, resulting in a decrease in
the diversity of the response and the user’s engage-
ment. (2) Knowledge Redundancy: As shown in
example 2, the user asks the system about the data

packages the user hold, the S2KG model not only
provides the name of the packages in the reply, but
also retrieves other information associated with the
packages, such as fees, etc. As a result, there is
knowledge redundancy in the system’s reply, which
is not conducive to the user’s ability to grasp the
key points.

6 Conclusion

In this paper, we present our models for Track 2 of
the SereTOD 2022 challenge aiming to build semi-
supervised and reinforced TOD systems. We divide
Track 2 into two task groups, classification (user
intent and system intent) and generation (system
response). For the classification tasks, we employ
Roberta-large and build two separate classification
models. We also perform continual pre-training,
class-wise threshold, and adversarial training strate-
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 "NA": {
        "用户状态": "欠费",
        "持有套餐": 
"咪咕视频,家校通,二十八元的基本套餐,两块钱语音包,流量安心包,校
讯通,qq会员,和留言,咪咕视频会员"
      }
      "ent-5": {
        "name": "qq会员",
        "type": "业务",
        "业务费用": "十五",
        "业务规则": "取消立即失效"
      },
      "ent-7": {
        "name": "流量安心包",
        "type": "流量包",
        "业务规则": "不使用不收费"
      }
    

"NA": {
      "账户余额": "两千二百积分" 

},
"ent-1": {
       "name": "活动",
       "type": "业务",
       "业务规则":"关注山西移动10086关注成功以后在上面
积分的话享三折打三折然后兑换流量,七百五六的积分您就
能兑换五百兆的省内流量"
}

KB

"用户":"唉你帮我查一下我这个_这张卡_呃积分有多少呢"

"S2KG客服":"积分现在有两千二百积分"

"用户": "嗯这个能换流量吗"

" S2 K G客服":"兑换流量的话现在有个活动关注山西移动10086微信关注
成功以后在上面积分的话享三折打三折然后兑换流量"

"用户": "那个如果我现在这个没没有网能能_能弄吗"

Example 1

Dialogue

" S2 K G客服":"手机上得关注山西移动10086关注成功以后在上面积分的
话享三折打三折然后兑换流量"  

Example 2

"用户":"你好？"

"S2KG客服":"您好请问什么可以帮您?"

"用户": "我想请问下我当前的持有套餐？"

"S2KG客服":"您现在的套餐是二十八元的基本套餐 , 两块钱语音包 , 和校
园家校互动a包, 咪咕视频会员,流量安心包不使用不收费一个qq会员十
五一个

"用户": "那我现在是欠费了？"

"S2KG客服":" 欠费金额属于您个人隐私人工台查询不了先生 您可以拨
打10086按一号键再转三号键查询一下好吧"  

Figure 6: Case study for two examples from S2KG system. We present the local KB, the user utterances and
prediction of S2KG system.

gies. For the generation task, we build a knowledge-
grounded dialog model S2KG and perform semi-
supervised pre-training both on labeled data and un-
labeled data. Our system achieves first place both
in the automatic evaluation and human interaction.
We also discuss the advantages and challenges of
our system to provide a guideline for future work.
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Abstract
Dialogue modeling problems severely limit the
real-world deployment of neural conversational
models and building a human-like dialogue
agent is an extremely challenging task. Re-
cently, data-driven models become more and
more prevalent which need a huge amount of
conversation data. In this paper, we release
around 100,000 dialogue, which come from
real-world dialogue transcripts between real
users and customer-service staffs. We call this
dataset as CMCC (China Mobile Customer
Care) dataset, which differs from existing dia-
logue datasets in both size and nature signif-
icantly. The dataset reflects several charac-
teristics of human-human conversations, e.g.,
task-driven, care-oriented, and long-term de-
pendency among the context. It also covers
various dialogue types including task-oriented,
chitchat and conversational recommendation
in real-world scenarios. To our knowledge,
CMCC is the largest real human-human spo-
ken dialogue dataset and has dozens of times
the data scale of others, which shall signifi-
cantly promote the training and evaluation of
dialogue modeling methods. The results of
extensive experiments indicate that CMCC is
challenging and needs further effort. We hope
that this resource will allow for more effective
models across various dialogue sub-problems
to be built in the future.

1 Introduction

Task-oriented dialogue systems (Young et al., 2013;
Williams et al., 2017; Su et al., 2021; He et al.,
2021; Jayanthi et al., 2021) are designed to assist
user in completing daily tasks, which involve rea-
soning over multiple dialogue turns. Tremendous
progress has been made recently, but building a
human-like dialogue system is a challenging task
remaining. To drive the progress of building di-
alogue systems using data-driven approaches, a
number of conversational corpora have been re-
leased in the past. Task-oriented dialogue corpus,

such as Frames (Asri et al., 2017), MultiWOZ
(Budzianowski et al., 2018), CrossWOZ (Zhu et al.,
2020), RiSAWOZ (Quan et al., 2020), are collected
by two crowd workers playing the roles of the user
and the system, which often leads to be small-
scale, and can not sufficiently capture a number
of challenges that arise with production scaling.
More recently, some researchers construct dialogue
datasets from real human-to-human scenario con-
versations, especially human-to-human customer
service scenario, such as JDDC (Chen et al., 2020)
and MobileCS (Ou et al., 2022). JDDC is collected
from E-commerce scenario and annotates intent
information. MobileCS is conducted from mobile
customer service scenario and model the process as
task-oriented conversations. Therefore, the entity
information related to tasks is annotated. However,
the complexity of the dialogue process is far more
than TOD, in addition to task completion, it is also
accompanied by emotional support that appease an
angry customer and providing solutions.

Several emotional support conversation corpora
(Welivita and Pu, 2020; Sharma et al., 2020;
Rashkin et al., 2019; Sun et al., 2021) are designed
to emotional chat or provide empathetic respond-
ing. Since the emotional supporters are not well-
trained, existing datasets do not naturally exhibit
examples or elements of supportive conversations.
As a result, data-driven models which leverage
such corpora are limited in their ability to explicitly
learn how to provide effective support. ESConv
(Liu et al., 2021) is collected by communication
of trained individuals who play the roles of the
seeker and the supporter, and guided by predefined
emotional support conversation framework, how-
ever, it is more focused on alleviating the negative
emotions that users encounter in their daily lives.

Despite the efforts in modeling emotional sup-
port, work that focuses specifically on modeling
emotional care and support in task-oriented dia-
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logue system is relatively limited. To this end, we
design a customer service care-oriented taxonomy,
and annotate care-oriented information for Mo-
bileCS dataset, covering 9 types of emotion labels
and 17 types of customer service act labels finally.
This new dataset consists of two parts, 8975 dia-
logues which are labeled with annotations of care-
oriented information and other more than 90,000
unlabeled dialogues. We call this new dataset as
CMCC (China Mobile Customer Care) dataset. To
be able to explain the patterns and trends of the con-
versation flow, we employ visualization methods to
illustrate the most frequent exchanges and reveal
how they temporally vary as dialogues proceed. Fi-
nally, we explore and demonstrate the effectiveness
of care-oriented information for dialogue sub-tasks.

We highlight our contributions as follows:

• We provide a customer service care-oriented
taxonomy, and conduct CMCC dataset on
top of MoibleCS to facilitate the dialogue re-
search.

• We employ visualization methods to illustrate
the most frequent exchanges and reveal how
patterns and trends temporally vary as dia-
logues proceed.

• We report the benchmark models and results
of two evaluation tasks on CMCC, indicating
that the dataset is a challenging testbed for
future work.

2 Data Annotation

2.1 Motivation

We collect the CMCC dataset from the user-
customer service conversations in real-life scenar-
ios. These dialogues are inherently rich in user and
customer service acts and emotional information.
Therefore, our data annotation process integrates
such features in the data and concentrates on how
the customer service provides caring and empa-
thetic acts according to a dynamic in the user’s emo-
tions. We present a novel data annotation approach
by adding "User Emotion", "Expanded Customer
Service Caring Act", and "Satisfaction" labels to
emphasize the importance of emotions and "care-
oriented" in the conversations. To our best knowl-
edge, limited datasets have demonstrated such fea-
tures in previous studies.

2.2 Guideline for Annotations
Our dataset is developed in multiple ways, which
are provided in detail throughout the following sec-
tions. Compared to the MobileCS dataset, three
new dimensions are added in our data annotation:
user emotions, expanded customer service caring
acts, and satisfaction. We also redefine the user
intents to clarify the differences between intents
and emotions.

2.2.1 User Emotion
We notice that users express various emotions
throughout the conversations with customer ser-
vice representatives, which can have a large impact
on data division and annotation. Limited studies
were conducted to consider this factor. As a re-
sult, we capture subtle user emotions throughout
the conversations to derive and divide them into 8
labels for annotations. The refined annotation is
necessary because customer service can act accord-
ingly with "care-oriented" methods. We develop
the "User Intent" labels from the MobileCS dataset,
and add "Propose suggestion" and "Propose criti-
cism" labels to separate intents from emotions. We
pre-define an annotation schema and an intent set
consisting of the 8 user emotion labels. At each
turn, if emotions are explicitly expressed, the user’s
utterances are allowed to be annotated with one or
more labels, which is common since multiple emo-
tions could be expressed in one sentence in real-life
conversations. The annotators are instructed to de-
termine if the user’s utterances contain emotions
according to the schema and common sense. For
example, "上次打电话说好了好了好了谁给我
开的我要投诉他" (That’s fine on the last phone
call. Who opened the business for me last time, I
want to complain to him), the label for this sentence
is "Emotionally More Agitated". "这样哦要像每
个人这样扣的话，还得了" (Would it be worth it
if everyone’s package was deducted like this?) is
labeled with "Complain About A Problem".

2.2.2 Expanded Customer Service Caring Act
It’s essential that good customer service provides
"care-oriented" responses for emotional support.
Adopting the original customer service acts from
the MobileCS dataset, we derive and pre-define
an "Expanded Customer Service Caring Act" set
from the conversations. At each turn, the anno-
tators are instructed to determine if the customer
service utterances contain caring and empathetic
acts to respond to user emotions and intents, al-
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lowing the use of multiple labels in one sentence.
In addition, we extract keywords in each customer
service utterance, such as "放心" (relax), "理解"
(understand)， and "别着急" (don’t worry), etc.,
indicating different customer service caring acts.
For example, "还有剩下的是基本费用请您放
心好吧" (The rest is the basic fee, please rest as-
sured.) is labeled as "comfort". "确实是您的心情
我非常理解" (I really understand how you feel) is
labeled as "empathy".

2.2.3 Satisfaction
The satisfaction labels are pre-defined based on the
context of conversations. Each conversation is re-
quired to be annotated with one of the three labels.
"3" indicates the user is satisfied; "2" indicates the
user accepts the suggestion provided by the cus-
tomer service representative while the problem is
unsolved; "1" indicates the user is unsatisfied. The
annotators are instructed to comprehend the context
of the conversation and annotate each conversation
with one of the three satisfaction labels. For exam-
ple, customer service: "请问还有其他可以帮到
您吗？" (Is there anything else I can help you with
?) user: "没有啦谢谢" (No thanks) is labeled as
"3", suggesting that the user is very satisfied with
the solution and result that the customer service
provided.

2.3 Annotation Results

We improve the MobileCS dataset and further de-
velop it by incorporating user emotions, expanded
customer service caring acts, and satisfaction in the
dialogues. Our novel dataset not only is motivated
by the inherent nature of customer service-user dia-
logues but also aims to emphasize a "care-oriented"
focus. Also, the experiment results support that the
CMCC dataset is advancing and valuable in user-
customer service conversations. The label set con-
sists of 4 expanded customer service caring acts,
13 original customer service acts, 9 user emotions,
14 user intents, and 3 satisfaction labels in total.

2.4 Quality Control

Since the annotations are conducted on several di-
mensions simultaneously and differently on mul-
tiple criteria, missing and incorrect labels are in-
evitable problems we might face. To ensure a high-
quality annotation result, we review and revise the
missing or incorrect annotations based on several
effective strategies. First, we conduct keyword ex-
tractions to check for the missing and incorrect la-

bels, which are manually filtered out and re-labeled
by the qualified annotators. For example, "您稍
等一下好吗，我这边的话肯定会站在你的角度
去想" (Can you wait a moment, I will definitely
think from your point of view) misses the "empa-
thy" label during the first round of annotation, and
it’s added during the manual check. Based on this
strategy, we review and re-label the dataset two
more times, which guarantees the efficiency and
completeness of our annotation. Additionally, for
the satisfaction annotation, we randomly sample
10% of conversations to check for the annotation
quality. For example, "唉算了算了反正还有几天
就" (Oh, forget it, there are still a few days left) is
labeled as "3" in the first round of annotation, but
it should be "2" instead.

Upon review, the missing labels and incorrect
labels from the dataset are all revised and corrected
for the quality control process. As a result, this
ensures the high quality of our data annotation pro-
cess.

3 Data Characteristics

This section mainly introduces the characteristics
of the data. In addition to showing the number of
conversations and labels in the dataset, we also
demonstrate the characteristics of customer ser-
vice dialogue data by visualizing the transition be-
tween customer service acts and user emotion in
dialogues.

3.1 Data Statistics

The basic information of the labeled part in this
dataset is shown in Table 1. The labeled data con-
tains a total of 8,975 dialogues. The maximum

Figure 1: The histogram of dialogue turns. The horizon-
tal axis is the number of dialogue turns, and the vertical
axis is the number of dialogues, filtering the dialogues
with less than 10 dialogues.
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Criteria Statistics

Total no. of dialogues 8,975
Total no. of dialogue
turns 100,139
Average no. of turns
per dialogue 22.31
Maximum no. of turns
per dialogue 16 (353 dialogues)
Minimum no. of turns
per dialogue 5 (1 dialogue)
Total no. of customer
service turns 100,139
Total no. of user turns 100,138
Average no. of customer
service tokens per dialogue
turn 25.27
Average no. of user tokens
per dialogue turn 14.58

Table 1: Dialogue statistics in the dataset.

number of dialogue turns included in the dataset is
16. Figure 1 is a histogram of dialogue turns. It can
be observed that most of the dialogue turns in the
dataset are concentrated between 8 and 13. This
means that the dialogue between the user and the
customer service typically ends in around 10 turns.
If there are situations such as user’s problems that
are difficult to solve, the number of turns in this
dialogue will increase significantly.

The histogram of user negative emotion labels is
shown in Figure 2. The statistical scope is all neg-
ative emotions of users in the dialogue, excluding
neutral emotions. The largest proportion of the en-
tire user emotion label is "Complain About A Prob-
lem". This label is about the user emotion that often
appears on the user side in the field of customer
service dialogue. It generally occurs when users
complain about networks, fees, business use, busi-
ness handling, and e-commerce after-sales. The
second-largest user emotion label is "Emotionally
More Agitated". This label indicates that various
businesses or services have seriously affected the
user experience, or that customer service has not
effectively helped users to solve problems.

Figure 3 is a statistical histogram of customer
service intent labels. It can be seen that the labels
with the largest proportion of intent are "Inform"
and "Passive Confirmation". "Inform" means that
the customer service informs the user of certain in-
formation, usually definite information, such as the
customer service will perform a certain operation,

Figure 2: The histogram of user negative emotion. The
horizontal axis is user emotion labels, and the vertical
axis is the number of emotions.

Figure 3: The histogram of customer service act. The
horizontal axis is the customer service act label, and the
vertical axis is the number of acts.

the problem will be solved within a certain period
of time, etc. "Passive Confirmation" means the act
of confirming based on the user’s inquiry or infor-
mation provided above. Since the common content
of dialogues in the field of customer service is to
solve the user’s problem, the labels of "Inform" and
"Passive Confirmation" will be ubiquitous in each
turn of dialogue.

3.2 Data Structure

For a better understanding of the data structure,
we investigate which customer service acts are fre-
quently associated with users when responding to
different emotional situations. We list the labeled
instances of customer service act, user emotion,
examples and the proportion of all labels, respec-
tively (detailed in the appendix). Most conversa-
tions have multiple intent labels or emotion labels.
For example, "Hello, nice to serve you, sorry to
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keep you waiting" includes "Apology" and "Greet-
ing". Based on the statistics of user emotions and
customer service acts, we observe the overall dis-
tribution of labels on the dataset.

In the following part, we will explore more about
the conversion relationship between user emotions
and customer service acts in the process of a dia-
logue. Figure 4 is a chord diagram of emotion-act
labels. It represents the dialogue relationship be-
tween the user’s emotion and the customer service
act in the dialogue.The nodes and edges of the
same color in the graph represent the user emotion
and the customer service act corresponding to the
next round of dialogue. It can be seen from the
figure that the largest act dialogue is from "Com-
plain About A Problem" to "Inform". This shows
that when the user encounters a business problem,
the customer service is more inclined to explain
the cause or solution to the problem to the user.
This phenomenon is in line with the most common
scenario in the field of customer service, that is,
customer service helps users solve related prob-
lems.

In order to intuitively observe the conversion
relationship between user emotion and customer
service act in multiple turns of dialogue, we draw a
Sankey diagram of the dialogue between user emo-
tion and customer service act in multi-turns. Figure
5 is the dialogue flow diagram of user emotions
and customer service acts in four turns of dialogues.
The first and third turns are user emotions, and the
second and fourth turns are customer service acts.
After the second turn of customer service replies
to the user’s dialogue with negative emotions, it
can be observed that the user’s emotion in the next
turn, which is also the third turn, has become more
"Neutral". This shows that as the customer service
responds to the user’s questions, the user’s negative
emotions will gradually disappear.

4 Experiments

In this section, we conduct experiments on the
CMCC dataset. We focus on two tasks: dialogue
response generation and user emotion recognition.

4.1 Dialogue Response Generation

Our experiments in this part mainly focus on the
question: Can extra care-oriented information im-
prove the generative dialogue model?

Figure 4: The chord diagram for user emotion and cus-
tomer service act relationship. More details on labels
can be found in the appendix. Best viewed in color.

4.1.1 Comparable Models
Similar to (Ou et al., 2022), we employ a Marko-
vian generative architecture (MGA) (Liu et al.,
2022) based on Chinese GPT-2 as baseline and
build the following variant model:

Baseline The baseline model is a MGA genera-
tive model, which is designed to be pθ(et, uit, at,
rt|et−1, ut). ut denotes the user utterance, et is
entity names of dialogue history, uit is the user
intent, and rt is the customer service response, re-
spectively, at turn t = 1, ..., T , for a diaogue of T
turns.

Variants with care-oriented information To in-
corporate the care-oriented annotations into the
baseline model, we add user emotion generation
and expand original customer service acts to with
caring acts in it. As is shown in Figure 6, for
each customer service response, we append user
emotion before corresponding customer service
act. Then MGA generative process can ber repre-
sented as pθ(et, uit, uemot, at, rt|et−1, ut) , where
uemot is the user emotion at turn t. The model gen-
erates the response conditioned on the predicted
user emotion and customer service act.

We study two variants that use care-oriented an-
notations in the experiments. (1) End2End: cus-
tomer service response is generated conditioned on
predicted customer service act and predicted user
emotion, user emotion and customer service act are
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Figure 5: Dynamic transformation of user emotion vs. customer service act in the first four rounds of dialogue. Best
viewed in color.

generated conditioned on KB result, KB result is
queryed conditioned on predicted entity name and
user intent. (2) Oracle: customer service response
is generated conditioned on gold reference of cus-
tomer service act, entity name, user intent and KB
result.

4.1.2 Evaluation Measures
To investigate the impact of utilizing care-oriented
information on the model performance with Chi-
nese GPT-2 as backbone, we compare the perfor-
mance of End2End and Oracle variants with the
Baseline model. The automatic metrics include F1
score, Success rate and BLEU score. F1 is calcu-
lated for both predicted user intent and customer
service act. Success rate (Budzianowski et al.,
2018) is the percentage of generated dialogues that
achieve user goals. BLEU-4 score (Papineni et al.,
2002) evaluates the fluency of generated responses.

4.1.3 Experimental Results
The experimental results are shown in Table 2,
which demonstrates the effectiveness of our model.
There are 3 major findings from the experiments.
(1) The Variant model has improved the Baseline
model’s performance of user intent F1, success rate
and BLEU-4 of response, but the F1 of the cus-
tomer service act has decreased slightly. It may be
because the variant model expands the original cu-
tomer service act labels, those with less data affects

the overall performance. (2) Whether it is End2End
or Oracle results, variant model is better than base-
line model in BLEU-4 of response, we attribute it
to the fact that care-oriented information matters
and it enhances the dialogue generation positively.
Care-oriented information includes user emotion
and expanded customer service caring act, which
part brings more gain will be analyzed in ablation
experiments. (3) End2End results are lower than
Oracle’s results, because if predicted intermediate
results is different from the ground truth, the gen-
erated response will be much different from the
reference response.

Models
F1 for

user intent
Success

rate

F1 for
customer

service act
BLEU-4

Baseline Model
(End2End)

0.642 0.315 0.575 4.137

Variant Model
(End2End)

0.656 0.357 0.567 4.669

Baseline Model
(Oracle)

– – – 6.230

Variant Model
(Oracle)

– – – 7.385

Table 2: Results of automatic evaluation. The results in
bold are better than the baseline.

4.1.4 Analysis
Our variant models consider care-oriented informa-
tion, user emotion and customer service caring act.
To investigate more, we conduct extra experiments
and the analysis results.

53



Figure 6: Variant model architecture with care-oriented information.

In order to verify the improvement brought by
each added part (user emotion, expanded customer
service caring act), we drop these two parts from
the original variant model and check the perfor-
mance changes. Results are presented in Table 3.
We have the following observations: (1) In most cir-
cumstances, when user emotion is removed, BLEU-
4 dropped more and success rate dropped less. (2)
When expanded customer service caring act is re-
moved, situation differs. That is, BLEU-4 dropped
less and success rate dropped more. It indicates
that expanded customer service caring act provides
more gain for the entity-related part of the response,
while user emotion plays more for the non-entity-
related part (e.g., caring or empathetic responding).

Models
F1 for

user intent
Success

rate

F1 for
customer

service act
BLEU-4

Variant Model
(End2End)

0.656 0.357 0.567 4.669

w/o user emotion 0.611 0.356 0.567 4.462
w/o expanded

customer service
caring act

0.656 0.340 0.577 4.657

Table 3: Evaluation results of ablation study.

In Table 4, examples are presented to compare
the response generated by variant model and the
baseline model. The first column is user utterance,
the second column is the response of manual cus-
tomer service, the third and fourth columns are the
responses generated by variant model and baseline
model respectively. In the first example, user re-
ports that the broadband network is not working
well, and accompanied by complaints. The variant
model can generate the response with the soothing
keyword "马上" (right now). In the second exam-
ple, user’s emotion is neutral and the variant model
is still able to generate a more friendly response
with "请您放心" (please do not worry) keyword.
Intuitively, the variant model which is introduced
with care-oriented information achieves better per-

formance than the baseline model.

4.2 User Emotion Recognition
In this part, we focus on the effect of different
models used in the emotion recognition task: the
classification-based model and generation-based
one. We will conduct experiments on the dataset
CMCC and answer the question: are both models
suitable to solve the emotion recognition problem?

4.2.1 Classification-based Model
We first treat the emotion recognition task as a
mutli-label classification problem because a user
utterance may contain multiple emotions, e.g., com-
plain about a problem and dissatisfied with buisi-
ness rules at the same time. Taking the pre-trained
models bert-base-chinese1 as the backbone, the
classification model takes dialogue utterances X as
input and predicts a binary result for each possible
dialogue emotion:

P = Sigmoid(W (G(X))) ∈ RN , (1)

where W ∈ Rdb∗N is a trainable weight matrix,
db is the hidden size and G is used to encode the
input utterance to our representation. The model
is trained with binary cross-entropy loss. The task
uses the threshold of 0.3 to predict whether the
emotion is triggered. We evaluate micro-F1 and
macro-F1 scores on our dataset for the emotion
recognition task.

4.2.2 Generation-based Model
The Generation-based model is consistent with the
variant model in the previous section 4.1.1. The
user emotion is generated conditioned on KB result
which is queryed conditioned on predicted entity
name and user intent. Micro-F1 and macro-F1 are
aggregation methods for the user emotion recogni-
tion task. Specifically, micro-F1 score gives equal

1https://huggingface.co/bert-base-chinese

54



User Utterance
Response of Manual
Customer Service

Prediction of Variant
Model

Prediction of Baseline
Model

用户：每天晚上一到
这个时候啊到十二点
过钟连看电视都看不到

User: Every night at
this time, I can’t
even watch TV until
after twelve o’clock.

客服：嗯抱歉先生现
在连我的远程系统都
看不了任何状态了_
这边的话请您稍后再
来电正在恢复当中恢
复好了请您这边再来
电好吗

Customer Service: I’m
sorry sir, I can’t even
see any status of my
remote system now.
Please call back later.
It is recovering. Please
call again when it is
restored.

系统：嗯好的那我这
边的话呢马上给您反
映到后台去给您核实
处理一下

System: Okay, I’ll
report it to you i
mmediately to the
backstage, and check
it out.

系统：嗯那您这个问题
的话我这边帮您记录反
馈到后台去给您处理一
下_然后呢我们这边的话
呢会尽快的给您回

System: I will help you
record the feedback and
send it to the background
to handle it for you,
and then we will call
you back as soon as
possible.

用户：帮我登记一下啊
安排你们师傅过来看

User: Help me register
and arrange for your
master to come and see.

客服：诶好的

Customer Service:
Oh, okay.

系统：好的那我这边
的话呢已经为您登记
好了请您放心

System: Okay, I’ve
already registered it for
you, please don’t worry.

系统：好的那我这边的
话就帮您登记一下然后
的话呢您就可以使用了

System: Okay, I’ll help
you to register, then
you can use it.

Table 4: Responses generated from variant model and baseline model.

importance to each observation. When the classes
are imbalanced, those classes with more observa-
tions will have a larger impact on the micro-F1
score. Thus the final micro-F1 score tends to hide
the performance of the minority classes and am-
plify the majority. On the other hand, macro-F1
score gives equal importance to each class. This
means that a majority class will contribute equally
along with the minority, allowing macro-F1 to still
return objective results on imbalanced datasets. As
shown in Table 5, our experiments show that the
generation_based approach can help us improve
emotion classification performance on the imbal-
anced classes, from a classification_based baseline
performance of 30.1% macro-F1 to 39.3%, an in-
crease of 9.2 points.

Models micro-F1 macro-F1
Generation-based 0.832 0.393

Classification-based 0.859 0.301

Table 5: Emotion recognition performance using two
different models (the generation-based model and the
classification-based one).

5 Conclusion

In this paper, we present CMCC, to date the largest
human-to-human real-life dataset annotated with
rich care-oriented information on top of MobileCS.
We not only manually label each dialogue with
comprehensive user emotion, customer service act
and satisfaction annotations for various sub-tasks
of multi-domain dialogue systems, but also further
investigate approach to facilitate the research of
care-oriented way via empirical experiments. In
addition, the process of data annotation and visu-
alization is described in detail. We also report the
benchmark models and results of two evaluation
tasks on CMCC, indicating that the dataset is a chal-
lenging testbed for future work. We will enrich the
dataset annotations (e.g., solutions, external knowl-
edge and API calls) from various aspects in future
work. We hope it can bring more imagination and
benefit future research in dialogue systems.
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Category Examples Frequency

通知(Inform)

嗯，我帮您看看您的手机有没
有开通业务了，我先帮你查一查

Well, let me help you to see
if your mobile phone has been
opened for business, let me
check for you first

37.72%

被动确认(passive confirmation)
对咱们这面办不了

Yeah, we can’t do it here
20.76%

问候(Greeting)
您好很高兴为您服务

Hello, glad to serve you
8.33%

主动确认(Active Confirmation)

您好感谢您耐心等待，有一个
十元一百兆的安心包确定要
取消是吗

Hello, thank you for your
patience, there is a peace
of mind package of ten yuan
and one hundred trillion,
are you sure you want to
cancel it?

7.95%

询问(request)

二十四小时之内先生，
一般都很快的，
那个您是主要在省内用吗

Within 24 hours, sir, i
t’s usually very fast. A
re you mainly using it in
the province?

6.64%

引导(Guide)

嗯请问什么其他可帮你吗
先生

Well, what else
can I help you with, sir?

6.05%

客套(Courtesy)

不客气已经帮您改好了
稍后查看一下

You’re welcome, I’ve fixed
it for you, check it out later

4.48%

建议(Suggest)
那建议您测试一下好吗

I suggest you test it
3.04%

其他(Other)
嗯

Um
1.42%

Table 6: Types, instances, and proportions of customer service acts.
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Category Examples Frequency

抱歉(Apology)

您好，很高兴为您服务，
抱歉让您久等了

Hello, nice to serve you,
sorry to keep you waiting

1.41%

安抚(Comfort)

哦，这个的话是可以使用的
，这您放心

Oh, this one can be
used, don’t worry

0.58%

再见(Goodbye)

好，麻烦了，感谢来电再见

Okay, sorry for your
troubles, thanks for calling, bye

0.50%

解释(Explain)

它是每天早上八点到晚上六点
之间办公的_就说现在已经下班
了明天早上八点以后才可以拨打

It works between 8:00 am
and 6:00 pm every day. It
means that it is already off work
now and can only be called
after 8:00 am tomorrow.

0.41%

否认(Deny)

不好意思，不是，那个假日流量
只是三天时间_并且_时候才可
以的
Sorry, no, that holiday
traffic is only available for
three days _ and _

0.36%

请求重复(Request To Repeat)
呃我没听清

uh i didn’t hear
0.33%

同理心(Empathy)

你这个心情，我非常理解，
给您带来不便，是向您致
一下歉

I understand your
feelings very much.
I apologize for the
inconvenience caused
to you.

0.02%

赞同(Agree)
嗯对是的，那您说的没错

Yes, then you are right
0.004%

Table 7: Types, instances, and proportions of customer service acts.
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Category Examples Frequency

抱怨某问题(Complain
About A Problem)

就是在那个上网的时间网络老是出现那个网络
异常怎么回事儿

It’s the time when the Internet is
online, the network always has that
network abnormality,what’s the matter?

77.14%

情绪较为激动(Emotionally
More Agitated)

因为我觉得我这个要求不是很高的他们确实
有有点做的过分

Because I don’t think my requirements
are very high, they are indeed
overdoing it.

11.10%

非常着急且态度恶劣(Very
Anxious And Having
A Bad Attitude)

没有啊_打电话了他给我说我办下，还什么办了
个三十G的咋了，我说你这些人[UNK]你说
话怎么这么_嘴里跑火车着呢

No, _ called and he told me that I
would do it, and even a 30G package
. why are you full of crap？

3.01%

对客服代表服务不满
(Dissatisfied With
Customer Service
Representative Service)

尽快呀，快到什么时候啊_对呀，我想问下快到什么
，四五天了耶，然后重点是我报修也报了三天之后
也没个人给我打个电话啊

As soon as possible, it’s been four or fiv
e days, and the point is that I appl
ied for repairs for three days and no one
called me.

2.82%

表示担忧或焦虑(Express
Concern Or Anxiety)

六十多岁了我能不着急吗我这个

I’m in my sixties, can I be in a hurry?
2.35%

对业务规定不满
(Dissatisfied With
Business Rules)

不可能吧哪有这种霸王条款我不想用我_我取掉的话
它为啥不让取

Impossible, how can there be such an overlord
clause, I don’t want to use it, I’ll jus
t cancel it, why not let me cancel

2.07%

执行某项操作有困难
(Difficulty Performing
An Operation)

咋咋个下载法我也搞不清楚

i don’t know how to download
1.03%

不太满意但不再追究(Not
Satisfied But No
Longer Pursue)

可以我希望你们后台人员无论处理出
怎样怎么样的结果_可以在最短的时间内告知我

Yes, I hope that no matter what the
result is from your backstage staff,
you can let me know in the shortest possible time.

0.47%

Table 8: Types, instances, and proportions of user negative emotions.
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Figure 7: User emotion-customer service act conversion relationship chord diagram
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Model entity (F1) emotion (Acc)
Stack-propagation Model 0.525 0.989

w/o user emotion 0.524 -
Baseline Model 0.382 -

Table 9: The joint performance on the stack-propagation
model (Qin et al., 2019) using the CMCC dataset with
or without emotion labeling.

Table 9 gives the result of the experiment com-
parison for entity extraction task. From results
of the first two rows, we observe that without the
emotion labels, simply incorporating the sequence
labeling information, the entity extraction perfor-
mance (micro-F1) drops slightly, which demon-
strates that directly leveraging the emotion infor-
mation can slightly improve the performance of the
entity extraction task.
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Abstract

Dialogue generation is a challenging problem
because it not only requires us to model the
context in a conversation but also to exploit
it to generate a coherent and fluent utterance.
This paper, aiming for a specific topic of this
field, proposes an adversarial training based
framework for utterance-level dialogue genera-
tion. Technically, we train an encoder-decoder
generator simultaneously with a discriminative
classifier that make the utterance approximate
to the state-aware inputs. Experiments on Mul-
tiWoZ 2.0 and MultiWoZ 2.1 datasets show that
our method achieves advanced improvements
on both automatic and human evaluations, and
on the effectiveness of our framework facing
low-resource. We further explore the effect of
fine-grained augmentations for downstream dia-
logue state tracking (DST) tasks. Experimental
results demonstrate the high-quality data gener-
ated by our proposed framework improves the
performance over state-of-the-art models.

1 Introduction

Task-oriented dialogue systems (Young et al., 2013;
Williams et al., 2016; Wu et al., 2020; Su et al.,
2021) are designed to assist user in completing
daily tasks, which involve reasoning over multi-
ple dialogue turns. User goals expressed during
conversation are important for the dialogue system
and often encoded as a compact set of dialogue
states, which is often expressed as a collection of
slot-value pairs.

Nowadays generative conversational models are
drawing an increasing amount of interest and be-
coming a more popular trend of task-oriented dia-
logue generation. Most existing generative conver-
sational models (Shang et al., 2015; Vinyals and
Le, 2015; Li et al., 2016; Yao, 2015; Luan et al.,
2016; Zhang et al., 2019b) predict the next dia-
logue utterance given the dialogue history using the
maximum likelihood estimation (MLE) objective,

[Sys] There are many options! Would you like to narrow 
your search by type of food? 

[Usr]  I would like to eat Chinese food at 18:00.

[State] <restaurant, food, Chinese> <restaurant, 
time, 18:00

book 
>

Generative Model 
(MLE)

R ,t tS Encoder  Decoder tU

Figure 1: Dialogue generation via MLE training.

considering conversation history to learn to gen-
erate responses via optimizing the query-response
pairs, as illustrated in Figure 1. Despite its suc-
cess, this over-simplified training objective leads
to problems: when generating dialogue responses
from these models by iteratively sampling the next
token, we do not have much control over attributes
of the output text, such as the topic, the style, the
sentiment, etc.

Solutions to these problems require answering
a fundamental question: how to steer a powerful
unconditioned dialogue model to generate content
with desired attributes? Some existing studies have
tackled this problem to control responses by using
extended labels, however, these models still had
some limitations (Wen et al., 2015; Li et al., 2016;
Zhao et al., 2017; Huang et al., 2018; Zhou et al.,
2018). One crucial issue was that they do not have
explicit dialogue state guiding to guarantee that a
controllable generation has a discriminability for a
given condition.

Inspired by the success of adversarial training
in computer vision (Denton et al., 2015) and natu-
ral language generation (Li et al., 2017), we delve
into the challenge and propose our approach for
state-aware dialogue generation with adversarial
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Generator

Discriminator

fake

real

Convolution
&

pooling
MLP

Policy Gradient

[Sys] There are many options! Would you like to narrow 
your search by type of food? [State] <restaurant, food, 
Chinese> <restaurant, book time, 18:00>

[Ref Usr] It needs to serve Chinese food and I would 
like a reservation for 18:00.

Decoder

Encoder

[Hyp Usr] I want to eat Chinese food at 18:00.

Reward
Prob(of real data)

Figure 2: An overview of state-aware adversarial training. Different flow directions are marked with obviously
distinguished arrows, blue and purple represent the training process of generator and discriminator, respectively.
There are two cycles. The blue cycle is for generator learning, updating the model parameters of generator. The
purple cycle is for discriminator learning, updating the discriminator model of periodic epoch. The learning of
generator and discriminator is conducted in an alternate manner. Best viewed in color.

training. We focus on controlling the utterances
by using dialogue state labels as conditions. We
extend a framework of the generative adversarial
network (Yu et al., 2017) for the task of generat-
ing conditional utterances on the basis of actual
dialogue state constraints, alternatively training be-
tween a generator and a discriminator. The experi-
mental results show that our proposed method has
higher controllability for state-aware dialogue even
though it has higher or comparable naturalness to
existing methods, and improves the discriminabil-
ity of generation. Furthermore, we investigate the
effectiveness of our approach via downstream di-
alogue state tracking (DST) tasks. Experimental
results demonstrate the high-quality data generated
by our proposed framework improves the perfor-
mance over state-of-the-art models.

The contributions of this paper are summarized
as follows:

• We propose a novel adversarial training based
framework for utterance-level dialogue gen-
eration, which generates more coherence and
fluency utterances.

• For the downstream DST task, the high-
quality data generated by our proposed frame-
work improves the performance over state-of-

the-art models.

• To our best knowledge, this is the first study
of state-aware utterance generation via adver-
sarial training with promising results.

2 Approach

In this section, we introduce the utterance-level
dialogue generation of adversarial training. As
shown in Figure 2, our framework consists of two
main components: a generator and a discriminator.
Different from the traditional generative dialogue
model trained by MLE, we view the process of ut-
terance generation as a sequence of actions that are
taken according to a policy defined by the genera-
tor here. It generates controllable utterances based
on input conditions, and the discriminator judges
the quality of the utterances generated by the gen-
erator, feeding the reward back to the generator
through policy gradient. The learning of generator
and discriminator is carried out alternately.

2.1 Task Formulation
Let’s denote a sequence of dialogue turns as a ma-
trix XT = [R1, U1, . . . , RT , UT ] , where U is the
user utterance, R represents the system response
and T denotes the number of turns. At each turn,
user’s goal can be regarded as a certain number
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of domain-slot-value pairs (e.g., (restaurant-area,
west)). The dialogue state tracking task is to track
the value for each slot over Xt (1 ≤ t ≤ T). Be-
lief states can be considered at two granularities:
turn-level (St) and dialogue-level (Bt). St denotes
the information introduced in the t-th turn and Bt

represents the accumulated information from the
first turn to the t-th turn. The task we focus on
is to generate a user utterance Ut conditioned on
the turn-level dialogue state St and corresponding
system response Rt.

2.2 State-Aware Adversarial Training

To generate more human-like user utterances, we
propose using adversarial training for generation:
the generator is guided by the discriminator to pro-
duce utterances that are indistinguishable from the
original dialogues and consistent with the belief
state condition. The discriminator is trained on
the dataset consisting of the utterances of origi-
nal dialogues and the utterances generated by the
generator. The learning of generator and discrimi-
nator is conducted in an alternate manner, which is
detailed in Algorithm 1.
Generator

The generator G defines the policy that generates
a user utterance Ut from a given dialogue history
Rt and a turn-level user goal St. It takes a form
similar to SEQ2SEQ models, which consists of an
encoder and a decoder. In this paper, the GRU-
based and the T5-based generators are employed
to approximate P (Ut|Rt, St), where the concatena-
tion of Rt and St is used as input to the encoder and
Ut is set to be the target sequence to be generated
by the decoder.
Discriminator

The discriminator D is a binary classifier that
aims to determine whether the user utterance is
generated or from the original dataset. In order to
make sense of belief state condition, the concate-
nation of turn-level belief state and user utterance
is used as input to the discriminator. We follow
the setting in SeqGAN to have CNN as the back-
bone model for the discriminator. First, the input
sequence is represented as [Ut]

⊕
[St], where each

token is represented as a k-dimensional token em-
bedding and

⊕
is the concatenation operator to

build the input matrix. Second, a kernel applies a
convolutional operation to a window size of words
to produce a new feature map and a max-over-time
pooling operation works. Finally the output vector

of a fully connected layer is fed to a 2-class sigmoid
activation, returning the probability of the input ut-
terance generated by generator or come from the
original dialogue.

Algorithm 1 State-aware adversarial training
Input: A dialogue dataset C ={ R, U , S }.
Output: The parameters θ of G; The parameters ϕ
of D.

1: Randomly initialize θ and ϕ;
2: Pre-train G using cross-entropy loss on C;
3: Generate user utterances using the pre-trained

G;
4: Pre-train D using generated user utterances as

negative samples and utterances from original
dialogue as positive samples;

5: for each epoch do
6: for each generator step do
7: Generate a user utterance

U
′
1:L=(u

′
1,. . . ,u

′
L) using the current G,

where L denotes the number of tokens;
8: for t in 1 : L do
9: Compute R

u
′
l

by Eq. (1);
10: end for
11: Update θ according to Eq. (3);
12: end for
13: for each discriminator step do
14: Sample <R, U , S> from the dataset C;
15: Concatenate S and U as a positive sam-

ple;
16: Generate U

′
using the current G;

17: Concatenate S and U
′

as a negative sam-
ple;

18: Update ϕ according to Eq. (4);
19: end for
20: end for
21: return θ and ϕ;

Adversarial Training
We cast the state-aware utterance generation

as a reinforcement learning problem that back-
propagate the error computed by the discriminator
to the generator via the policy gradient algorithm.
The generator can be seen as an agent whose pa-
rameters θ define a policy. At each time step, it
takes an action by generating a token and gets a
reward value from the discriminator by employing
Monte-Carlo search. The estimated probability of
being real by D is used to calculate the reward:
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Rul
= Dϕ(U1:l|S), (1)

where ul is the l-th token in U, Rul
represents the

reward of token ul and ϕ is the parameters of D.
The goal of the generator is minimize the nega-

tive expected reward of generated utterance using
the REINFORCE algorithm (Williams, 1992):

JG(θ) = −EU∼G[Dϕ(U |S)], (2)

where U ∼ G represents the utterance U is gener-
ated from G and θ is the parameters of G.

With the likelihood ratio trick (Williams, 1992),
the gradient of θ can be derived as:

∇JG(θ) = −EU∼G[Dϕ(U |S)] · ∇ logGθ(U |S)
≈ −Dϕ(U |S) · ∇ logGθ(U |S),

(3)
The goal of the discriminator is to distinguish

whether a user utterance is from original dialogue
or generated by the generator. It computes the
probability that the user utterance is from original
dialogue given the turn-level belief state. Therefore,
its objective function is to minimize classification
error rate:

min
ϕ

− EU∼ground−truth logDϕ(U |S)

−EU∼G log(1−Dϕ(U |S)),
(4)

where Dϕ(U |S) is the probability of U that it
comes from original dialogue, U ∼ ground −
truth represents the utterance U is from the golden
label.

3 Experiments and Analysis

3.1 Dataset
We take MultiWOZ 2.0 and MultiWOZ 2.1 as
datasets for the experiments. MultiWOZ1 series
dataset is a fully-labeled collection of human-
human written conversations spanning over multi-
ple domains and topics. It contains 8438 multi-turn
dialogues with on average 13.7 turns per dialogue.
It has 30 (domain, slot) pairs and over 4,500 slot
values. Compared to MultiWOZ 2.0, MultiWOZ
2.1 has fixed the noisy state annotations and com-
bined user dialogue acts as well as multiple slot
descriptions per dialogue state slot into the new
version. To date, these two datasets are recognized
as the most widely used benchmark datasets in the
field of dialogue systems.

1https://github.com/budzianowski/multiwoz/tree/master/data

3.2 Implementation Details

For a fair comparison, we introduce tow instan-
tiations for the proposed framework, denoted as
GRU-based and T5-based, respectively.

GRU-based: The generator is an encoder-
decoder text generation model consists of simple
GRU network, and the network structure of the dis-
criminator is CNN. The optimizer for the generator
and discriminator is Adam (Kingma and Ba, 2014).
The learning rates are 1e-3 and 1e-4 respectively.
In the adversarial training phase, the parameters of
the 5 epoch discriminators are updated after each
update of the parameters of the generator.

T5-based: The generator is an encoder-decoder
implementation on the basis of T5, which is a
pre-trained model composed of transformers, and
the network structure of the discriminator is CNN.
The optimizer for generator and discriminator is
AdamW (Loshchilov and Hutter, 2018). The learn-
ing rates are 2e-5 and 5e-5, respectively. In the
adversarial training phase, the parameters of the 4
epoch discriminators are updated after each update
of the parameters of the generator.

We implement all the benchmarks using Pytorch
on servers equipped with Nvidia Tesla V100 GPUs,
each with 32GB memory. Source codes of our
work in this paper will be open-sourced on Github
as soon as we clean our code.

3.3 Main Results and Evaluation

Automatic Evaluation
We measure the quality of generated utterances

by BLEU scores (Papineni et al., 2002) and BERT-
score (Zhang et al., 2019a). In this experiment, only
the utterances of each turn of original dialogues are
used as reference sentences for the calculation of
BLEU instead of the entire dataset as reference
sentences. This is because the generated utterance
from the dialogue model only need to be relevant
to the turn-level state and input utterance, not the
full dataset.

Tables 1 are experiments on the full dataset.
GRU-based and T5-based represent the results of
training with MLE, +GAN represents the results
of using adversarial training (ADV). From Table
1 we can see our adapted models surpass original
MLE up to 1.09% in BLEU-5, indicating the effec-
tiveness of the added adversarial training process.
GRU-based+GAN and T5-based+GAN exceed cor-
responding MLE-baselines with the same trending,
respectively. Based on our proposed framework,
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Model MutilWOZ2.0 MutilWOZ2.1
BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score

GRU-based 23.41% 16.43% 11.82% 8.70% 88.33% 25.30% 17.82% 12.54% 8.99% 88.63%
+GAN 24.37% 17.03% 12.15% 8.66% 88.35% 26.38% 18.98% 13.64% 10.08% 88.83%

T5-based 25.43% 19.55% 15.39% 12.35% 89.17% 25.92% 19.95% 15.70% 12.58% 90.11%
+GAN 25.46% 19.58% 15.42% 12.39% 89.18% 26.31% 20.23% 15.87% 12.65% 90.12%

Table 1: Automatic evaluation of two models trained by MLE and adversarial training on full datasets.

Model MutilWOZ2.0 MutilWOZ2.1
BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score

GRU-based 17.20% 11.11% 7.52% 5.18% 87.09% 17.20% 11.11% 7.52% 5.18% 87.09%
+GAN 17.77% 11.69% 7.95% 5.46% 87.28% 17.77% 11.69% 7.95% 5.46% 87.28%

T5-based 21.43% 15.39% 11.42% 8.66% 88.11% 23.71% 17.48% 13.00% 9.87% 88.53%
+GAN 21.45% 15.67% 11.76% 8.92% 88.16% 23.98% 17.72% 13.22% 10.03% 88.55%

Table 2: Automatic evaluation of two models trained by MLE and adversarial training in low-resource scenario.

Table 1 shows that the effectiveness of ADV is
consistent in two datasets of different metrics.

In order to further explore the performance of
our framework in the case of low-resource scenario,
100 instances of full dialogues are randomly se-
lected from the training dataset, and 50 instances of
complete dialogues are randomly selected from the
validation dataset. Tables 2 shows the performance
of two models on MultiWOZ 2.0 and MultiWOZ
2.1 under low-resource settings. Predictably, vari-
ous degrees of performance degradation occurs, es-
pecially on GRU-based model. On the other hand,
the improvement under the same setting demon-
strates the effectiveness of our framework facing
low-resource.

Combining the experimental results of the above
different settings, it can be observed that both the
BLEU score and BERT-score of the results after
adversarial training are better than MLE training.
Human Evaluation

We evaluate the generated data from two per-
spectives: statement fluency and turn-level belief
state correctness. The statement fluency indicates
whether the generated sentence is fluent and human-
likely. The turn-level belief state correctness evalu-
ates whether <Rt, U

′
t> is consistent with S′

t.
There are two corresponding evaluation metrics,

Sentence fluency and Slot accuracy. (1) Sentence
fluency represents whether the generated sentence
conforms to the natural expression of human be-
ings and is suitable as an answer to a question.
(2) Slot accuracy represents whether the generated
utterance contains the dialogue state of the input
utterance.

Randomly select 100 instances generated by the
models and invite 3 experts to evaluate the data for
human evaluation. Table 3 shows human evalua-

Sentence Fluency
Slot accuracy

Mean score (1-5) ≥ 3(%)
USER 4.59 96.30% 80.70%
MLE 4.00 87.70% 53.30%
ADV 4.16 92.00% 64.00%

Table 3: Human evaluation of GRU-based generator.
Sentences are scored on a scale of 1 to 5. The average
value represents the average score, and ≥3(%) repre-
sents the proportion of the sentence evaluation score
greater than or equal to three points in all sentences.

Sentence Fluency
Slot accuracy

Mean score (1-5) ≥ 3(%)
USER 4.78 100.00% 71.23%
MLE 4.70 98.67% 76.50%
ADV 4.81 98.67% 79.73%

Table 4: Human evaluation of T5-based generator.

tion results for naturalness and controllability of
GRU-based generator in MultiWOZ 2.0 dataset.
Regarding the naturalness, models used adversar-
ial learning produced a more acceptable utterance
to the dialogue context. At the same time, the
adversarial-explicit model achieved the best per-
formance among the compared ones in terms of
the controllability. A same trend occurs in the
evaluation of T5-based one: the results show that
ADV outperforms the MLE on almost all metrics
and even strengthens the performance of human
reference. Notably, the performance of T5-based
generator even outperforms the results of the orig-
inal data (corresponding USER line) in Table 4.
In the original MultiWOZ dataset, there are label-
missing errors for dialogue states. Specifically, the
turn-level belief state is not reflected in the user
utterance fully. Through data inspection, we find
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that the T5-based generator corrects the errors in
the original dataset. This situation shows that the
model can well use the belief state as a condition
to generate the corresponding user utterance.

Experimental results demonstrate that our ap-
proach produces more interactive, relevant, and
fluent utterances than standard SEQ2SEQ models
trained using the MLE objective function. Beyond
this, evaluation details for automatic and human
ways are shown in the appendix.

3.4 Downstream Results
In this section, we conduct experiments on a suite
of downstream DST tasks and present the results
of applying utterance-level dialogue generation on
DST data augmentation. The learning of dialogue
state tracker is detailed in Algorithm 2. Here data
augmentation is to generate a new user utterance
U ′
t conditioned on a modified S′

t derived from orig-
inal turn-level belief state St. The modification
strategy uses the value substitution method (Li
et al., 2021). To overcome the de-generation and
over-generation phenomenons, a data filter F is
employed to filtering the generated candidates (Li
et al., 2021). Then a novel sequence of dialogue
turns X ′

t=[R1,U1,...,Rt,U ′
t] is formed by replac-

ing the original user utterance Ut with U ′
t , and B′

t

which is induced by Bt based on the difference be-
tween St and S′

t is the dialogue-level belief states
of X ′

t. We use the resulting set of <X ′
t,B

′
t> to

do DST data augmentation. In the following, two
known typical DST models are selected for further
experiments.

• TRADE: TRAnsferable Dialogue statE gen-
erator (TRADE) (Wu et al., 2019) generates
dialogue states from utterances using a copy
mechanism, facilitating knowledge transfer
between domains. The prominent difference
from previous one-domain DST models is that
TRADE is based on a generation approach in-
stead of a close-set classification approach.

• TripPy: TripPy (Heck et al., 2020) presents a
new SOTA approach which makes use of vari-
ous copy mechanisms to fill slots with values
to avoid the use of value picklists altogether.
This model has no need to maintain a list of
candidate values. Instead, all values are ex-
tracted from the dialogue context on-the-fly.

We train each DST model on the mixing of
MultiWOZ 2.0 training data and augmented data.

Algorithm 2 The DST data augmentation
Input: A dialogue dataset C, the randomly
initialized Generator G, data filter F , belief state
modification strategy π, the dialogue state tracker
with parameters ρ.
Output: Trained tracker.

1: Train G using Algorithm 1 on dataset C;
2: Train F with cross-entropy loss on dataset C;
3: Modify turn-level belief state from St to S

′
t

according to π;
4: Obtain new data C ′ according to S

′
t by the

trained G;
5: Obtain new data C

′
F by filtering de-generation

and over-generation data;
6: Train the tracker on C+C

′
F , update ρ;

7: Save the tracker with ρ;

Trained DST models are then evaluated on origi-
nal test set. Results are shown in Table 5. Both
training with augmentation of TRADE and TripPy
outperform the original models. The joint goal
accuracy improves to 49.76% and 59.09% respec-
tively, and TripPy reaches the state-of-the-art per-
formance on MultiWOZ 2.0 dateset. This shows
the effectiveness of our adversarial utterance-level
dialogue generation for DST data augmentation.

Model Joint Goal Accuracy(%)
TRADE 48.62
+ Augmentation 49.76
TripPy 58.01
+ Augmentation 59.09

Table 5: Joint goal accuracy results on MultiWOZ 2.0.

3.5 Analysis and Discussion

Case study from Table 6 has displayed three typical
errors in our experiments of dialogue generation
tasks: (1) The slot value is wrong. (2) The slot is
missing. (3) The slot type is wrong. Specifically,
System+State stands for inputs, and USER repre-
sents references. Last two columns are the output
results of MLE training and ADV training. The
results show that the above-mentioned errors can
be alleviated via our proposed framework, and the
model after adversarial training can better adapt
to the input conditions in the dialogue, achieving
more appropriate utterance-level dialogue genera-
tion.
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System+State USER MLE ADV

system: tr0275
will leave at 13:29
and arrive by 14:07 .
would you like to
buy tickets ? state:
train book people 3

yes , could you
make a booking
for 3 people ?

yes , i ’ll need the
train for 7 people .
can you book the
reference number ?

yes , i need book
for 3 people please .

system: i love
the fez club , their
phone number is
01223519224 .can i
help you with
anything else today ?
state: train
destination
ely , train day
Thursday

i would love some
information on a
train to get me
to ely on thursday .

i also i also need
a train to train
leaving on thursday.
(miss ely)

i also need a
train to ely to
leave on thursday.

system: would
you like me to book
it for you ? state:
train book people 7

yes , for 7 people .
yes , please .
i need 7 tickets .

yes , please book
it for 7 people .

Table 6: Case study. System+State stands for inputs, and USER represents references. Last two columns are
the output results of MLE and ADV. The black-lined font is the dialogue state of the current turn. We expect the
generated utterances exactly correspond to the inputs. The red font are typical errors generated by MLE model.

Model Confusion matrix Acc(%)

Real
Pre. N P

MLE N 594 32 97.12
P 4 622

Real
Pre. N P

ADV N 397 229 81.39
P 4 622

Table 7: Confusion matrix for MLE and ADV. The
results show that the pre-trained discriminator will mis-
judge the fake text after adversarial training.

To analyze the results quantitatively, we verify
the effectiveness of utilizing adversarial training
under the control variable method, that is, a same
pre-trained discriminator is applied for both gen-
erators. We use the pre-trained discriminator to
evaluate the utterances generated by the model of
adversarial training (real text) and the utterances of
original dialogues (fake text) as shown in Figure 3.

Table 7 shows the confusion matrix of predicting

Figure 3: Contrast experiment for the quality judgment
of generated utterances by two models.

results via discriminator’s classification, where neg-
ative samples (N) represent utterances generated by
the generator and positive samples (P) represent ut-
terances of original dialogues. The accuracy (Acc)
is calculated as follow:
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(a) Visualization of MLE. (b) Visualization of ADV.

Figure 4: Feature visualization of generative spaces for
two models’ comparison.

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where TP and TN represent the number of cor-
rect predictions for real text and generated text,
respectively. FP and FN represent the number
of incorrect predictions for real text and generated
text, respectively.

It can be seen the text generated by adversarial
training makes it more difficult for the pre-trained
discriminator to distinguish the authenticity of the
inputs. The results further support this point of
view can be seen in the confusion matrix. Com-
paring MLE model and ADV model, the discrimi-
nator’s judgment result for real samples maintains,
but the judgment on generated text differs. It can be
confirmed the accuracy’s drop of the discriminator
is affected by the decline in the generator’s ability
to judge more realistic generated samples.

In order to present the classification results more
intuitively, dimensionality reduction of the features
after the convolutional layer in the discriminator
is visualized using the t-SNE algorithm (Van der
Maaten and Hinton, 2008). The visual features are
shown in the Figure 4. The red dots represent the
real text, and the blue dots represent the generated
text. Comparing (a) and (b), it can be observed that
boundary becomes unrecognizable and overlapping
after adversarial training, which adds a layer of
complexity to the discriminator and brings new
challenges.

4 Related Work

The idea of generative adversarial networks (Good-
fellow et al., 2014) has enjoyed great success in
computer vision (Radford et al., 2015; Chen et al.,
2016; Brock et al., 2018; Karras et al., 2020). Train-

ing is formalized as a game in which the genera-
tive model is trained to generate outputs to fool
the discriminator; the technique has been success-
fully applied to image generation. However, to the
best of our knowledge, this idea has not achieved
comparable success in NLP. This is due to the
fact that unlike in vision, text generation is dis-
crete, which makes the error outputted from the
discriminator hard to back-propagate to the gener-
ator. Some recent work has begun to address this
issue: Lamb et al. (2016) propose providing the
discriminator with the intermediate hidden vectors
of the generator rather than its sequence outputs.
Such a strategy makes the system differentiable and
achieves promising results in tasks like character-
level language modeling and handwriting genera-
tion. Yu et al. (2017) use policy gradient reinforce-
ment learning to back-propagate the error from the
discriminator, showing improvement in multiple
generation tasks such as poem generation, speech
language generation and music generation. Outside
of sequence generation, Chen et al. (2018) apply
the idea of adversarial training to sentiment analy-
sis and Zhang et al. (2017) apply the idea to domain
adaptation tasks. Cui et al. (2019) proposed Dual
Adversarial Learning (DAL), which uses adversar-
ial learning to mimic human judges and guides the
system to generate natural responses. To improve
the diversity of responses, Xu et al. (2018) pro-
posed a Diversity-Promoting Generative Adversar-
ial Network (DP-GAN). This method encourages
the generation of highly diverse texts by assign-
ing low rewards to repeated texts and high rewards
to new texts, and a new discriminator structure is
proposed to determine repeated texts.

Our work is related to recent work that formal-
izes sequence generation as an action-taking prob-
lem in reinforcement learning (Sutton and Barto,
2018). Ranzato et al. (2015) train RNN decoders in
a SEQ2SEQ model using policy gradient to obtain
competitive machine translation results. Bahdanau
et al. (2016) take this a step further by training an
actor-critic RL model for machine translation. Also
related is recent work (Shen et al., 2015; Wiseman
and Rush, 2016) to address the issues of exposure
bias and loss evaluation mismatch in neural trans-
lation.

5 Conclusion

In this paper, we address the difficulty of utterance-
level dialogue generation by proposing an adver-
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sarial training based framework that can generate
high-quality data to improve the downstream DST
performance. Specifically, our method leverages an
encoder-decoder framework in terms of an adver-
sarial training paradigm, while taking advantage of
dialogue state-aware semantic representation from
the reinforced generator to construct the discrimi-
nator. The two-stage training process delivers more
adversarial-balance for both after iterative interac-
tions. Experimental results on MultiWoZ 2.0 and
MultiWoZ 2.1 datasets demonstrate that the pro-
posed framework significantly improves the per-
formance over the state-of-the-art models. Future
work includes more exploration into the design of
generator-discriminator architect and improvement
of more dialogue tasks.

Limitations

Our work pioneers in the adversarial training based
framework for utterance-level dialogue generation,
which trains an encoder-decoder generator simulta-
neously with a discriminative classifier that make
the utterance approximate to the state-aware inputs.
However, our paper may have following omissions
and inadequacies.

• Our focused task is limited in turn-level belief
state. DST of dialogue-level is beyond the
scope of this article. We believe this situation
will meet new challenges and we will explore
more in the next work.

• The policy gradient reinforcement learning
algorithm is used to optimizing the genera-
tor during adversarial training process, which
slows down the training speed of T5-based
generator.

• Though we list case study in our paper, we
believe it needs more rethinking and compari-
son work into the internal mechanism in the
future.
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A BERT-Scroe

Experimental Setup : We randomly selected 100
samples from the data set to obtain the results of
MLE and ADV. Furthermore, respectively calculate
samples with USER’s text the similarity degree.
After 100 Bert-Scores were calculated, the average
was calculated.The result are reported below:

Method BERT-score
MLE 89.18%
ADV 89.67%

Table 8: Random sampling of 100 samples of BERT-
score results

In order to prevent uneven distribution, the test
data were divided into 10 groups and the BERT-
score of the mean MLE model and ADV model are
calculated respectively. The main results are shown
below:

Figure 5: An overview of bert-score.

According to the Figure 5, the average Bert-
score of group 2 is higher than that of ADV, and
the similarity of the texts generated by ADV model
is higher than that generated by MLE model in the
other 9 groups, which proves the effectiveness of
the algorithm.

B Human evaluation

Table 9 and Table 10 represent the experimental
details statement fluency, and the conditions of
slot value, contained for the human evaluation of
the GRU-based model, respectively. Table 11 and
Table 12 represent the same experimental details
for the T5-based model, respectively.

Statement Fluency
USER MLE ADV

average

value
≥3(%)

average

value
≥3(%)

average

value
≥3(%)

expert1 4.81 96% 4.12 81% 4.49 87%
expert2 4.38 97% 3.79 86% 3.92 94%
expert3 4.57 96% 4.09 96% 4.06 95%
average 4.59 96.30% 4 87.70% 4.16 92%

Table 9: Statement fluency experiment with GRU
model.A total of 3 experts participated in the evaluation.
Sentences are scored on a scale of 1 to 5. The average
value represents the average score, and ≥3(%) repre-
sents the proportion of the sentence evaluation score
greater than or equal to three points in all sentences

The conditions of slot value contained
USER MLE ADV

Contain
/Part /No

Acc
Contain
/Part /No

Acc
Contain
/Part /No

Acc

expert1 79/12/9 79% 53/28/19 53% 64/19/17 64%
expert2 82/11/7 82% 53/26/21 53% 66/20/14 66%
expert3 81/13/6 81% 54/31/15 54% 62/23/15 62%
average - 80.70% - 53.30% - 64%

Table 10: The conditions of slot value contained with
GRU-based model.Contain, Part, and No respectively
represent whether the answer of the dialogue is fully
contained, partially contained, or not containing the
dialogue state. Accuracy is only calculated for cases
where the dialogue state is completely contained.

Statement Fluency
USER MLE ADV

average

value
≥3(%)

average

value
≥3(%)

average

value
≥3(%)

expert1 4.84 100% 4.49 98% 4.71 98%
expert2 4.8 100% 4.71 98% 4.75 98%
expert3 4.71 100% 4.9 100% 4.98 100%
average 4.78 100.00% 4.70 98.67% 4.81 98.67%

Table 11: Statement fluency experiment with T5-based
model. A total of 3 experts participated in the evaluation.
Sentences are scored on a scale of 1 to 5. The average
value represents the average score, and ≥3(%) repre-
sents the proportion of the sentence evaluation score
greater than or equal to three points in all sentences.
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The conditions of slot value contained
USER MLE ADV

Contain
/Part /No

Acc
Contain
/Part /No

Acc
Contain
/Part /No

Acc

expert1 36/12/3 70.6% 39/8/4 76.5% 40/7/4 78.4%
expert2 37/10/4 72.5% 39/8/4 76.5% 41/6/4 80.4%
expert3 36/12/3 70.6% 39/9/3 76.5% 41/6/4 80.4%
average – 71.23% – 76.5% – 79.73%

Table 12: The conditions of slot value contained with
T5-based model.Contain, Part, and No respectively rep-
resent whether the answer of the dialogue is fully con-
tained, partially contained, or not containing the dia-
logue state. Accuracy is only calculated for cases where
the dialogue state is completely contained.
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Abstract

Recently, there have merged a class of task-
oriented dialogue (TOD) datasets collected
through Wizard-of-Oz simulated games. How-
ever, the Wizard-of-Oz data are in fact simu-
lated data and thus are fundamentally different
from real-life conversations, which are more
noisy and casual. Recently, the SereTOD chal-
lenge is organized and releases the MobileCS
dataset, which consists of real-world dialog
transcripts between real users and customer-
service staffs from China Mobile. Based on
the MobileCS dataset, the SereTOD challenge
has two tasks, not only evaluating the construc-
tion of the dialogue system itself, but also ex-
amining information extraction from dialog
transcripts, which is crucial for building the
knowledge base for TOD. This paper mainly
presents a baseline study of the two tasks with
the MobileCS dataset. We introduce how the
two baselines are constructed, the problems en-
countered, and the results. We anticipate that
the baselines can facilitate exciting future re-
search to build human-robot dialogue systems
for real-life tasks.

1 Introduction

Building human-robot dialogue systems is an im-
portant research question not only for artificial in-
telligence applications but also for artificial intelli-
gence itself. In the Turing test, if the human eval-
uator finds that human-robot dialogue and human-
human dialogue are indistinguishable, the robot
would be said to exhibit intelligent behaviour and
pass the test (Turing, 1950). So presumably, the
best strategy to build an intelligent dialogue system
may be to train the system over a large amount
of real human-to-human conversations to mimic
human behaviors. This approach was once pur-
sued and several human-human dialogue datasets
have been released, such as the Twitter dataset (Rit-
ter et al., 2010), the Reddit conversations (Schrad-

∗Corresponding author, †Equal contribution

ing et al., 2015), and the Ubuntu technical sup-
port corpus (Lowe et al., 2015). It is argued in
(Budzianowski et al., 2018) that the lack of ground-
ing conversations onto an existing knowledge base
(KB) limits the usability of the systems developed
over these human-human dialogue datasets.

So a class of Wizard-of-Oz simulated games
have emerged to collect human-human conversa-
tions (Wen et al., 2017b; El Asri et al., 2017;
Budzianowski et al., 2018; Zhu et al., 2020; Quan
et al., 2020), particularly for task-oriented dialogue
(TOD) systems which help users accomplish spe-
cific goals such as finding restaurants or booking
flights and usually require a task-related KB. In
the Wizard-of-Oz set-up, through random sam-
pling based on an ontology and a KB (both are
pre-defined), a task template is created for each
dialogue session between two crowd workers. One
worker acts as the role of a user and the other per-
forms the role of a clerk (i.e. the system side). In
practice, multiple workers may contribute to one
dialogue session. In this way, annotations of belief
states and systems acts become easy, and ground-
ing conversations onto the KB is realized.

However, dialogue data collected in the Wizard-
of-Oz set-up are in fact simulated data and thus
are fundamentally different from real-life conver-
sations. During the Wizard-of-Oz collection, spe-
cific instructions (e.g., goal descriptions for the
user side and task descriptions for the system side)
are provided for crowd workers to follow. In con-
trast, real-life dialogues are more casual and free-
style, without instructions. Even with some goals
in mind, chit-chat or redundant turns are often exist
in real-life conversations, e.g., asking for repeating
or confirming key information. In some sense, we
could say that real-life dialogues are more noisy.
Moreover, spoken conversations in real-world have
a distinct style with those well-written conversa-
tions and are full of extra noise from grammatical
errors, influences or barge-ins (Kim et al., 2021).
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For building dialogue systems that are more appli-
cable to real-life tasks, real human-human dialogue
datasets with grounding annotations to KBs are
highly desirable.

Recently, the SereTOD challenge is organized
(Ou et al., 2022) and releases a new human-human
dialogue dataset, called the MobileCS (Mobile Cus-
tomer Service) dataset. It consists of real-world
dialog transcripts between real users and customer-
service staffs from China Mobile. Based on the ob-
servation and analysis of those dialogue transcripts,
a schema is summarized to our best1, according to
which about 10,000 dialogues are annotated with
entities, attribute triples and speaker’s intents for
every turn. The annotated part of the MobileCS
dataset is randomly split into a train, development
and test set, which consists of 8975, 1025 and 962
dialogues, respectively.

Based on the MobileCS dataset, the SereTOD
challenge not only evaluates the construction of
the dialogue system itself (Task 2), but also exam-
ines information extraction from dialog transcripts
(Task 1), which is crucial for building the KB. The
MobileCS data are more noisy and challenging, as
compared to previous Wizard-of-Oz data. It is non-
trivial to establish baseline systems on such dataset.
This paper mainly presents a baseline study of the
two tasks with the MobileCS dataset. Two baseline
systems are constructed for the two tasks respec-
tively, which both are released as open source2 and
provided to the participating teams in the SereTOD
challenge. We introduce how the two baselines
are constructed, the problems encountered, and the
results. The results clearly show the challenge for
information extraction and human-robot dialogue,
when trained and tested on real human-human data.
We anticipate that the baselines can facilitate excit-
ing future research to build human-robot dialogue
systems for real-life tasks.

2 Related Work

2.1 Dialogue Datasets

According to Budzianowski et al. (2018), exist-
ing dialog datasets (whether task-oriented or not)
can be grouped into three categories: machine-
to-machine, human-to-machine, and human-to-
human. The machine-to-machine datasets may en-

1How to build an “optimal” schema for a real-life task is
still an open research problem. Further investigation of the
schema for the MobileCS dataset is an interesting future work.

2https://github.com/SereTOD/SereTOD2022

sure full coverage of all possible dialogue outcomes
within a certain domain, but they do not consider
noisy conditions in real life, which poses a risk of
a mismatch between training data and real interac-
tions. The human-to-machine datasets, however,
depend on the provision of an existing working di-
alogue system, which limits the practicality of the
datasets. The human-to-human datasets address
the problems in the above two classes of datasets.
However, previous human-to-human datasets lack
knowledge base and explicit goal in the conversa-
tion, making that systems trained with these corpus
struggle in generating consistent and diverse re-
sponses (Li et al., 2016).

It is non-trivial to collect a TOD dataset with
knowledge base and user goals. Previous TOD
datasets are either collected through Wizard-of-
Oz simulated games (Wen et al., 2017b; El Asri
et al., 2017; Budzianowski et al., 2018; Zhu et al.,
2020; Quan et al., 2020), or collected by converting
machine-generated outlines to natural languages
using crowd workers (Shah et al., 2018; Rastogi
et al., 2020; Lee et al., 2022). However, during the
collection of these previous datasets, specific in-
structions are provided for crowd workers, which is
different from real-life conversation scenarios and
leads to a gap between collected data and dialogues
in real-life. The MobileCS dataset, introduced in
SereTOD Challenge, comes from real-world dia-
logue transcripts and represents a step advancing
to remedy the above deficiencies.

2.2 Dialogue Information Extraction

Dialogue information extraction is the task of ex-
tracting structured information, e.g., entities and at-
tributes, from dialogue transcripts. Different from
the traditional information extraction in general do-
main text (Sarawagi et al., 2008; Li et al., 2020b;
Han et al., 2020), dialogue transcirpts are more ver-
balized and loose with more irregular expressions
and grammar errors. Previous works have explored
how to extract user information (Catizone et al.,
2010; Hirano et al., 2015; Wu et al., 2019), clinical
information (Kannan et al., 2018; Peng et al., 2021),
and relations between speakers and mentioned en-
tities in dialogues (Yu et al., 2020; Jia et al., 2021).
However, there is no previous work focusing on
extracting information on real-world dialogue tran-
scripts between real users and customer-service
staffs. In the paper, we develop a modern dialogue
information extraction baseline, based on the Mo-
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bileCS dataset, which contains dialogue transcripts
from China Mobile.

2.3 Task-oriented Dialogue System

The methodology for building TOD systems is
gradually advancing from separate training of in-
dividual modules (Williams et al., 2016; Mrkšić
et al., 2017; Dai et al., 2018) to the end-to-end
(E2E) trainable approach (Wen et al., 2017a; Liu
and Lane, 2017; Lei et al., 2018; Shu et al., 2019;
Zhang et al., 2020; Gao et al., 2020; Zhang et al.,
2020). In early E2E methods, the sequential turns
of a dialog are modeled with LSTM-based back-
bones. Recently, self-attention based Transformer
neural networks (Vaswani et al., 2017) have shown
their superiority in capturing long-term dependen-
cies over LSTM based networks. Transformer
based pretrained language models (PLM), such
as GPT2 (Radford et al., 2019) and T5 (Raffel
et al., 2020), have been leveraged to build gen-
erative E2E TOD systems in the pretraining-and-
finetuning paradigm, which have shown improved
performance over LSTM-based ones. Examples in-
clude GPT2-based SimpleTOD (Hosseini-Asl et al.,
2020), SOLOIST (Li et al., 2020a), AuGPT (Kul-
hánek et al., 2021) and UBAR (Yang et al., 2021),
and T5-based PPTOD (Su et al., 2021) and MT-
TOD (Lee, 2021), among others. However, these
previous TOD systems are mainly examined on
simulated data collected by crowd workers. It is
not clear what the potential performance of the cur-
rent methodology of building TOD systems is in
real-life tasks. In this paper, we present our effort
to answer this question, by developing a TOD sys-
tem on the MobileCS data, which are from real-life
customer-service.

3 MobileCS Dialogue Dataset

The MobileCS dialogue dataset contains 10,000
dialogue labeled by crowd-sourcing and around
90,000 unlabeled dialogues. For each dialogue
turn, the annotations consist of entities, attribute
triples, and speaker’s intents within the scope of the
schema. Another around 1000 dialogs are put aside
as the test data. More detailed information about
the MobileCS dataset can be found in the challenge
description paper for the SereTOD challenge (Ou
et al., 2022).

The two tasks defined over the MobileCS dataset
for the SereTOD challenge require different an-
notations. For information extraction (Task 1),

the annotations of entities and attribute triples are
needed for training and evaluating the system. For
TOD system construction (Task 2), user intents,
system intents and a local knowledge base (local
KB, which covers personal information and relevant
public knowledge in a dialogue) are required. A
global KB, which covers and fuses all public knowl-
edge and all personal information in the MobileCS
domain, is difficult to obtain during the research
phase. Thus, the SereTOD challenge introduces
the concept of a local KB, which could be viewed
as being composed of the relevant local snapshots
from the global KB for each dialog. The local KB
is obtained automatically by integrating all the an-
notations of entities and attributes into a sequence
of entities3. Besides, user goals are needed for eval-
uating the performance of TOD systems in Task
2. Similarly, user goals are obtained automatically
by integrating user intents and all the entities and
attributes mentioned by the user. The examples of
local KB and user goal can be found in Listing 1 in
the challenge description paper (Ou et al., 2022).

Data Quality The MobileCS data were anno-
tated by two professional data labeling teams ac-
cording to well documented guidelines as described
in (Ou et al., 2022). Quality control was enforced
by sampling the annotated data and performing
crossing check of the annotations by the two teams.
Nevertheless, there still exist annotation errors in
such a large dataset. Some annotation errors can be
corrected by rules. A typical example of errors is
the granularity error of entity types. In the schema,
entity types have inheritance relationships, for ex-
ample, “main package” inherits from “package”
and contains all its properties. Therefore, there are
quite a few annotation confusions between parent
types and child types in the data. To correct those
type errors, the most fine-grained type for each en-
tity was selected according to the attributes held by
the entity. By combining the schema with manual
rules, more annotation errors can be corrected. The
updated MobileCS dataset is called v1.1, which is
released in the SereTOD challenge and used in the
experiments in this paper.

3An interesting future problem is to study the quality of
the local KBs constructed in such a way and their influence
on the performance of the dialogue system.
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4 Tasks

4.1 Task 1: Information Extraction from
Dialog Transcripts

Task 1 aims to extract structured information from
real-world dialogue transcripts for constructing KB
for the TOD system. This task consists of two sub-
tasks: entity extraction and slot filling. The entity
extraction task aims to extract entities, involving
named entity recognition and entity coreference
resolution. And the slot filling task aims to ex-
tract the attributes and values of entities, and the
status of user accounts. Compared to the informa-
tion extraction tasks on general domain texts, this
task poses more challenges. First, dialogue tran-
scripts are more verbalized, loose and noisy, which
requires more robust models. Second, dialogue
transcripts contain more pronouns and referents,
some of which even span several rounds. This
requires coreference resolution and long context
modeling.

4.2 Task 2: Task-Oriented Dialog Systems

The basic task for the TOD system is, for each
dialog turn, given the dialog history, the user utter-
ance and the local KB, to predict the user intent,
query the local KB and generate appropriate sys-
tem intent and response according to the queried
information. Compared with previous work, this
task has the following characteristics. First, there
is no global KB but only a local KB for each di-
alog, containing all the information in entity and
attribute annotations and representing the unique
information for each user, e.g., the user’s package
plan and remaining phone charges. Second, the
user’s constraints on entities are relatively simple,
e.g., 38M data package, so the customer service
system usually can confirm the entities that the user
refers to in one dialogue turn, without the need of
dialogue state accumulation.

5 Baseline Models

5.1 Task 1 Baseline

Task 1 involves two challenging sub-tasks: entity
extraction and slot filling. Therefore, we design a
pipeline method to extract information from dia-
logue transcripts. For entity extraction, the pipeline
is two-step: named entity recognition and entity
coreference resolution. For slot filling, the pipeline
is also two-step: slot recognition and entity slot
alignment. For each step, we first utilize a text

encoder backbone to encode utterances and then
a task-specific module to extract specific informa-
tion based on the encoded representations of the
utterances. In our experiments, we adopt three text
encoders: LSTM (Lai et al., 2015), BERT (Kenton
and Toutanova, 2019), and RoBERTa (Liu et al.,
2019). The overall model architecture is illustrated
in Figure 1. The hyper-parameters are shown in
Table 1. The details of each step are as follows.

Named Entity Recognition First, we utilize a
sequence labeling method to extract entity men-
tions in dialogue transcripts as in Yamada et al.
(2020a). Specifically, after encoding utterances,
we adopt conditional random field (Lafferty et al.,
2001) on the top of hidden representations to label
entity mentions from each utterance of the dialogue
transcripts.

Entity Coreference Resolution After extracting
entity mentions from dialogue transcripts, we uti-
lize an entity coreference resolution method to
group the mentions that refer to the same entity,
as the local KB organizes knowledge in entity level
instead of mention level. Specifically, after encod-
ing dialogues, we adopt the dot product between
the representation vectors of the two entity men-
tions as the metric to assess whether two mentions
refer to the same entity. The representation vector
of an entity mention is defined by the mean pooling
of the representations of the tokens of the entity
mention, as did in Yao et al. (2019). We then uti-
lize the binary cross entropy loss as the objective
to fine-tune the backbone encoders.

Slot Recognition Slot recognition aims to rec-
ognize slots from plain texts, regardless of which
entity the slot belongs to. We utilize a sequence
labeling method to recognize the slots, i.e., to label
certain spans in the utterance as slots, which are the
attributes of entities and the status of users. Specif-
ically, we utilize the same model architecture as in
Named Entity Recognition to label slots from each
utterance of the dialogue transcripts.

Entity Slot Alignment To construct a local KB,
the final procedure is to link slots to the correspond-
ing entities. We formulate the task as a sequence
classification task. Specifically, we highlight an
entity and a slot using special markers and then
encode the text to the contextual representation,
which is inspired by Soares et al. (2019). We adopt
a linear classification head to classify whether the
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Text Encoder

SPEAKER 1: 天翼畅享套餐怎么样？
SPEAKER 2: 这个套餐每⽉20元资费，您可以了解⼀下天翼5G套餐。 

Conditional Random Field

B-套餐 I-套餐 I-套餐 I-套餐 I-套餐 O O O O 

Conditional Random Field

天 翼 畅 享 套 餐 怎 么 样 ？
 

天翼5G套餐   天翼畅享套餐    这个 <ent_1>   <slot_1> 这 个 套 餐 每 ⽉ 20 元 资 费 … 

O O O O B-费⽤ I-费⽤ I-费⽤ I-费⽤ O O 

Named Entity Recognition Entity Coreference Resolution Slot Recognition

Linear Head

0 1

Entity Slot Alignment

Figure 1: The overall model architecture of the pipeline model for Task 1. For the sub-task entity slot alignment, we
utilize marker (e.g., <ent_1>entity mention<\ent_1>) to highlight entities and slots in the original text input.

Hyper-parameter LSTM PLMs

Learning Rate 1× 10−3 3× 10−5

Batch Size 64 64
Epoch 20 5

Table 1: Hyper-parameters of fine-tuning LSTM and
PLMs (BERT, RoBERTa) on Track1 task.

slot corresponds to the entity.

5.2 Task 2 Baseline

KB Query We need to design a KB query func-
tion to help the TOD system access information
from the local KB. After observing the dataset,
we find that user queries can be divided into three
different types. We encapsulate all query scenar-
ios into one function and list their inputs (i.e. the
arguments of the query function) and outputs as
follows.

• Query the attribute of a specified entity. The
input is the entity name and the attribute to be
queried, the output is the attribute value in the
local KB.

• Query entities of specified types. The input is
entity type, the output is the entity names of
this type.

• Query the attribute for users. The input is
the attribute to be queried, the output is the
queried attribute value in the local user profile
(part of the local KB).

With the above query function, the TOD system can
use the predicted user intent to access information
from the local KB.

Baseline Architecture We divide the TOD sys-
tem into several sub-tasks. For every dialog turn,
the system needs to perform the following steps
in order: 1) predict the entity name mentioned or
referred to by the user; 2) predict the user intent
(including the arguments of the query function);
3) query the local KB using the predicted user in-
tent and obtain the KB result; 4) predict the system
intent; 5) predict the system response. Note that
there are many pronouns and co-references of entity
names, so that the system may not be able to predict
correct entity name with only the user utterance in
current turn. To solve this problem, dialogue his-
tory information is needed. However, in real-life
dialogues, the dialogue history is particularly long
and contains plenty of characters, which will se-
riously hurt the training efficiency of the model
(Liu et al., 2022). Therefore, we maintain a list of
entity names mentioned by the user in all previous
turns (entity name history) to replace the dialogue
history. The entity name history and user utterance
are fed into the model as the conditioning input to
complete the above sub-tasks. Similar to Hosseini-
Asl et al. (2020); Li et al. (2020a); Kulhánek et al.
(2021); Yang et al. (2021); Liu et al. (2022), we
employ a sequence generation architecture based
on Chinese GPT-2 (Du, 2019) to implement the
dialog system, which is depicted in Figure 2.

Data Analysis As described in Section 1, there
are chit-chat or redundant turns in real-life dia-
logues. As observed from MobileCS, we find
that these redundant turns can be divided into
three cases: 1) one speaker asks for repetition
and the other repeats what he/she said before; 2)
one speaker confirms information and the other re-
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Figure 2: The baseline model architecture for Task 2. Examples are provided under the title of each box.

sponds to it passively; 3) the user interrupts the
agent with some simple interjections, and then the
agent continues to speak. Three examples corre-
sponding to the three cases are shown in Table 2.

These redundant turns are interesting new phe-
nomena revealed from the MobileCS data, which
are transcribed from spoken conversations. Re-
markably, the repetition and confirmation may be
caused by that the staff did not hear clearly due to
the accent or low quality of the user speech. The in-
terjection is a special feature for spoken dialogues.
However, after transcription of speech, the speech
modality is missing, since only text is remained.
Thus, the system in textual dialogues receives no
relevant input from the user and is thus unable to
respond properly. We leave further study of this
problem for future work. In this work, we perform
some pre-processing on the data to reduce the noise
brought by the three cases. Specifically, for the first
two cases, we simply delete the whole redundant
turn (including utterances on both user and system
sides) in the dialogue. For the third case, we merge
the redundant turn with its previous turn by delet-
ing the user utterance and merge the agent response
with the previous one. Finally, we obtain a cleaned
dataset with 15% fewer turns than the original one.

6 Evaluation

6.1 Task 1 Results

Metrics The evaluation metrics are two-fold.
The metric for entity extraction is the span-level
F1, following previous named entity recognition
work (Yamada et al., 2020b). The metric for slot
filling is the triple-level F1: a predicted entity-slot-
value triple is correct if and only if the entity, slot
and value are all correct. The evaluation for slot
filling is a combinatorial optimization problem, as
the entity is also predicted. We hence utilize the
Hungarian algorithm (Kuhn, 1955) to find a best
entity matching between predictions and golden

user 成那改成那最便宜那是打打那个长途是多少钱呢
system 呃呃您再说一下
user 我说改成那种你说那个便宜的是打打那个长途是多少钱一分钟呢

user 沈那中学里面
system 沈那中学是吗
user 对

system 三十八我看这边是流量送您六百兆通话送您两百分钟
user 嗯
system 前三个月每个月还送您二十块钱话费和一g的流量

Table 2: Examples of three types of redundant turns
in MobileCS. The redundant utterances are marked in
blue.

labels before calculating the metric for slot filling.

Results The models are trained on the training
set for a certain number of epochs (as shown in
Table 1), selected according to performance over
the dev set, and evaluated on the official test set4.
The results are shown in Table 3. It can be seen that
even with powerful pre-trained language models
as text encoders, the performance of the baseline
model is poorer on the MobileCS dataset, espe-
cially for the named entity recognition and slot
recognition sub-tasks, as compared to results on
other datasets reported in the literature (Yamada
et al., 2020a). These results demonstrate how de-
manding the MobileCS dataset is, and indicate that
extracting structured information from long and
loose texts, e.g. dialogue transcripts, remains chal-
lenging for existing models, which urges more pow-
erful and robust models.

6.2 Task 2 Results
Metrics In order to measure the performance of
TOD systems, both automatic evaluation and hu-
man evaluation are conducted. For automatic eval-
uation, metrics include Precision/Recall/F1 score,
Success rate and BLEU score. P/R/F1 are cal-
culated for both predicted user intents and system

4Notably, the challenge leaderboad for Track 1 are ranked
by the results tested over 500 dialogues, which is only a subset
of the official test set and were held out by the Challenge
Organizers and not sent to the teams.
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Backbone F1 (NER) Golden Labels Pipeline

B3 (ECR) F1 (SR) Acc. (ESA) F1 (SF)

LSTM (Lai et al., 2015) 35.02 85.84 43.89 76.84 31.37
BERTBASE (Kenton and Toutanova, 2019) 34.21 88.09 46.46 76.50 33.24
RoBERTaBASE (Liu et al., 2019) 33.74 88.02 45.59 77.32 33.28
RoBERTaLARGE (Liu et al., 2019) 35.06 89.42 46.89 78.07 34.95

Table 3: Experimental results of Task 1 on the official test set, with different text encoder backbones. “Golden
Labels” means using golden prerequisite labels (e.g. golden entities for entity coreference resolution) for each
pipeline step. “Pipeline” represents using previous predictions for each pipeline step. The evaluation metric is
micro F1 for named entity recognition and entity slot alignment, B-cubed metric (Bagga and Baldwin, 1998) for
entity coreference resolution, and accuracy for entity slot alignment. NER: Named Entity Recognition. ECR: Entity
Coreference Resolution. SR: Slot Recognition. ESA: Entity Slot Alignment. SF: Slot Filling.

Dataset U-P/R/F1 S-P/R/F1 BLEU Success

Original 0.681/0.569/0.620 0.635/0.501/0.502 3.79 0.268
Cleaned 0.686/0.595/0.637 0.656/0.547/0.596 4.13 0.279

Table 4: The results of Task 2 baseline on the official
dev set. U-P/R/F1 and S-P/R/F1 denote P/R/F1 for the
user side and the system side, respectively.

intents. Success rate is the percentage of generated
dialogs that achieve user goals. Specifically, for
each dialogue, we extract the information requested
in the user goal from the local KB, then we regard
this dialogue as a success if the generated responses
contain all the requested information. BLEU score
evaluates the fluency of generated responses by
comparing them with oracle responses. For human
evaluation, 5 testers (staffs from China Mobile) in-
teracted with the system, and each tester should
interact for at least 10 dialogues with the system.
The tester would score the system on a 5-point
scale (1 to 5) by the following 3 metrics. Success
measures if the system successfully completes the
user goal by interacting with the user. Coherency
measures whether the system’s response is logi-
cally coherent with the dialogue context. Fluency
measures the fluency of the system’s response.

Results Based on the analysis in Section 5.2,
we conduct experiments on the original dataset
and the cleaned dataset, respectively. The mod-
els are trained on the official training set for 40
epochs, and tested on the official dev set. The re-
sults are shown in Table 4. It can be seen that the
model trained on the cleaned dataset outperforms
the model trained on the original dataset in all met-
rics, which demonstrates the benefit of cleaning
up redundant conversations. Nevertheless, the re-
sults on the cleaned MobileCS still fall behind by a
large margin in comparison to the results on other

Fluency Coherency Success

2.76 2.18 2.24

Table 5: Human evaluation of the Task 2 baseline system
(trained on the cleaned dataset).

Wizard-of-Oz datasets. For example, the Success
rate of state-of-the-art models on MultiWOZ2.1 is
around 75%, while it is lower than 30% on Mo-
bileCS. The BLEU score on MobileCS is much
lower than that on CrossWOZ (Liu et al., 2021).
Note that both TOD systems on MobileCS and
CrossWOZ are based on Chinese GPT-2, though
not strictly comparable. These results demonstrate
how challenging of building TOD systems for real-
life tasks is. The agent responses from real-life are
much more difficult to be modeled, as compared
those in the Wizard-of-Oz scenarios.

We further perform human evaluation for the
best baseline model (i.e. the model trained on the
cleaned dataset) and the average scores of all tested
dialogues are shown in Table 5. The scores of
the three metrics are relatively low (lower than 3),
which shows that in most cases, responses gener-
ated by the baseline system are neither fluent nor
coherent enough, and can not provide requested
information satisfactorily. In a word, building a
TOD system that can perform well on real-life dia-
logues is very challenging, and there is much room
for the baseline TOD system to be improved. The
MobileCS dataset offers a valuable and challenging
testbed for future research of building human-robot
dialogue systems for real-life tasks.

7 Discussion and Conclusion

The performance of task-oriented dialogue systems
on Wizard-of-Oz datasets have been improved con-
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tinuously to a high level, for example, as shown
in MultiWOZ5. However, Wizard-of-Oz dialogue
data are in fact simulated data and thus are fun-
damentally different from real-life conversations,
which are more noisy and casual. For further ad-
vancement of human-robot dialogue technology,
real human-human dialogue data with grounding
annotations to KBs are highly desirable. Further,
noting that the KB is an indispensable part for TOD
systems and usually is not readily available for real-
life tasks, it is very important to investigate not
only the dialogue system itself but also information
extraction to construct the KB.

With the MobileCS dataset released by the Sere-
TOD challenge, this paper presents a baseline study
of both information extraction (Task 1) and human-
robot dialogue (Task 2) over real human-human
dialogue data. We introduce how the baselines for
the two tasks are constructed, the problems encoun-
tered, and the results. It is found that the MobileCS
dataset offers a challenging testbed for both tasks,
with interesting open problems. Our baselines pro-
vide an easy entry to investigate the new dataset,
and we anticipate that the baselines can facilitate
exciting future research to build human-robot dia-
logue systems for real-life tasks.
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Abstract

Building user simulators (USs) for reinforce-
ment learning (RL) of task-oriented dialog sys-
tems (DSs) has gained more and more attention,
which, however, still faces several fundamental
challenges. First, it is unclear whether we can
leverage pretrained language models to design,
for example, GPT-2 based USs, to catch up
and interact with the recently advanced GPT-
2 based DSs. Second, an important ingredi-
ent in a US is that the user goal can be effec-
tively incorporated and tracked; but how to flex-
ibly integrate goal state tracking and develop
an end-to-end trainable US for multi-domains
has remained to be a challenge. In this work,
we propose a generative user simulator (GUS)
with GPT-2 based architecture and goal state
tracking towards addressing the above two chal-
lenges. Extensive experiments are conducted
on MultiWOZ2.1. Different DSs are trained via
RL with GUS, the classic agenda-based user
simulator (ABUS) and other ablation simula-
tors respectively, and are compared for cross-
model evaluation, corpus-based evaluation and
human evaluation. The GUS achieves superior
results in all three evaluation tasks.

1 Introduction

Task-oriented dialog (TOD) systems are mainly de-
signed to help users accomplish specific goals, such
as finding restaurants or booking flights. The dialog
system (DS) usually consists of several modules
- dialog state tracking (DST), database querying
(DB), dialog policy (DP) and natural language gen-
eration (NLG). Recent studies recast these modules
all as conditional generation of tokens and build
on some pretrained language model (PLM) such
as GPT-2 (Radford et al., 2019) as the backbone.
Fine-tuning PLM over annotated dialog datasets
via supervised learning (SL) has shown state-of-
the-art results (Hosseini-Asl et al., 2020; Li et al.,

∗Corresponding author. The code is released at https:
//github.com/thu-spmi/GUS

Figure 1: The information flow in a task-oriented dialog.
Domains and intents are enclosed by square brackets.

2020; Kulhánek et al., 2021; Yang et al., 2021; Lee,
2021), thanks to the powerful generation ability of
PLMs.

However, supervised trained agents could be-
come biased by the annotations, and it has long
been recognized that reinforcement learning (RL)
could be applied to policy learning for the agent
(Young et al., 2013), which aims at goal-directed
learning from interaction between the dialog agent
and the user. Interaction with human users is ex-
pensive and time-consuming in practice. Therefore,
an alternative approach, building user simulators
(USs), has gained more and more attention, which,
however, still faces several fundamental challenges.

First, note that the recent research on building
dialog agents has been significantly advanced with
the end-to-end trainable generative approach based
on PLMs such as GPT-2. However, prior work on
user simulators are mostly LSTM-based, not utiliz-
ing any PLMs, as reviewed in Table 1. It is unclear
whether we can leverage PLMs to design, for ex-
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ample, GPT-2 based1 user simulators, to catch up
and interact with the GPT-2 based dialog agents.
This has not ever been systematically examined, to
the best of our knowledge. We leave detailed dis-
cussion to Related Work section, where we review
prior work on USs from a number of important
features in building USs.

Second, an important ingredient in a US is that
the user goal can be incorporated and tracked. Task-
oriented dialog systems are characterized by a user
goal, which is composed of user constraints and
requests. The user goal ensures that the user be-
haves in a consistent, goal-directed manner, and
the system agent is considered successful if it is
able to fulfill the user goal by the end of a dialog
session. Thus, it is desirable for the US to track the
completion process of the goal explicitly (which
we call goal state tracking in this paper), as did in
the classic agenda-based user simulator (ABUS)
(Schatzmann et al., 2007). However, the goal state
tracking process is overlooked in later data-driven
USs (Asri et al., 2016; Gür et al., 2018; Papangelis
et al., 2019), or realized by binary vectors (Kreyssig
et al., 2018; Lin et al., 2021; Tseng et al., 2021), or
only works at the semantic level (Takanobu et al.,
2020). How to flexibly integrate goal state track-
ing and develop an end-to-end trainable US for
multi-domains has remained to be a challenge.

In this work, we propose a generative user sim-
ulator (GUS) with GPT-2 based architecture and
goal state tracking towards addressing the above
two challenges in building end-to-end trainable
USs for reinforced multi-domain dialog systems.
Basically, a US, interacting with a DS in natural lan-
guages, needs several modules - natural language
understanding (NLU) of system responses, goal
state tracking (GST) to refresh the remained con-
strains and requests that need to send subsequently,
user policy (UP), and natural language generation
(NLG). The information flow in a task-oriented di-
alog between a US and a DS is illustrated in Figure
1. In generative user simulator (GUS), we recast
these modules in US all as conditional generation
of tokens, similar to the recent approach of fine-
tuning PLMs such as GPT-2 to build end-to-end
trainable generative DSs.

To be specific in this paper, we use the GPT-2
based architecture for GUS to generate user acts
and user utterances, and constantly track the goal

1It can be seen that the discussion and the proposed method
in the remainder of this paper can also be applied to other
PLMs such as T5 (Raffel et al., 2020), not limited to GPT-2.

US PLM
Goal State Cross-model Compared Natural Lang. Multi-
Tracking Evaluation with DS-SL Interaction Domain

Schatzmann et al. (2007) N Y N N N N
Asri et al. (2016) N N N N N N
Liu and Lane (2017) N N N Y Y N
Gür et al. (2018) N N N N N N
Kreyssig et al. (2018) N Y Y N Y N
Papangelis et al. (2019) N N N Y Y N
Shi et al. (2019) N N Y N Y N
Takanobu et al. (2020) N Y N Y N Y
Lin et al. (2021) N Y Y N N Y
Tseng et al. (2021) N Y N Y Y Y
GUS Y Y Y Y Y Y

Table 1: Comparison of prior different user simulators
from a number of important features in building USs.
DS-SL denotes dialog system (DS) trained by super-
vised learning (SL). See Section 2 for detailed meaning
of each feature by column.

state according to the user acts and system acts
of the previous turn, which is shown in Figure 2.
In this work, the definition of goal state is similar
to the agenda in ABUS (Schatzmann et al., 2007),
which represents a collection of pending user acts
that are needed to elicit the information specified
in the goal. The maintenance of goal state includes
not only removing the completed user acts, but also
changing the user goal when the system cannot find
a requested entity.

Extensive experiments are conducted on Mul-
tiWOZ2.1 (Eric et al., 2020). Different DSs are
trained via RL with GUS, ABUS and other abla-
tion simulators respectively, and are compared for
cross-model evaluation, corpus-based evaluation
and human evaluation. The GUS achieves superior
results in all three evaluation tasks.

2 Related Work

Novelty In Table 1, we review prior work on USs
from a number of important features in building
USs, including whether or not the US is based on
any PLMs, the US conducts goal state tracking, the
cross-model evaluation (Schatztnann et al., 2005)
is conducted to assess the performance of the US,
the DS trained via RL with the US is compared
to the DS trained via supervised learning, the US
and the DS interact in natural languages 2, the US
is designed to work for multi-domain dialogs. It
is clear from Table 1 that our proposed GUS is
distinctive, which represents the first US that pos-
sesses all these desirable features, to the best of our
knowledge. More discussions are provided in the

2This means that during reinforcement training of the DS
with the US, the US accepts the system response in natural
language. In contrast, for those USs with ‘N’ marked in
the ‘Natural Lang. Interaction’ column, the system acts are
directly fed to the US so that the US does not need a natural
language understanding module. For such as case, the US is
also said to work at the semantic level.
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following.

US Architecture A variety of user simulators
have been studied, either rule-based or data-driven.
A classic rule-based US is the agenda-based user
simulator (ABUS) (Schatzmann et al., 2007). Dif-
ferent data-driven US models are proposed with dif-
ferent architectures and characteristics. Asri et al.
(2016) develops a LSTM-based seq2seq US on
the single-domain DSTC2 dataset and generates
semantic-level user acts. Gür et al. (2018) proposes
a GRU-based hierarchical seq2seq framework for
US (HUS) and further introduces a latent variable
to control the diversity of dialogue (VHUS). NUS
(Kreyssig et al., 2018) extracts feature vectors re-
lated to current goal states and feeds to a LSTM
seq2seq model to output natural languages. Shi
et al. (2019) make extensive comparisons for six
user simulators, based on two user policy modules
(seq2seq or agenda based) and three NLG mod-
ules (template, retrieval or seq2seq). TUS in (Lin
et al., 2021) designs domain-independent features
and implements the user policy as multi-class clas-
sification so that TUS could be easily adapted to
new domains. Some studies aim to jointly opti-
mize DS and US. The USs used in these studies
are mostly based on LSTM seq2seq architectures
(Liu and Lane, 2017; Papangelis et al., 2019; Tseng
et al., 2021), or simply as multi-class classification
for action selection with feed-forward networks
(Takanobu et al., 2020).

Goal State Tracking in US ABUS is classic in
goal state tracking, where the pending user acts
are tracked in a stack-like structure, called agenda.
ABUS is rule-based, generating user acts by push-
ing and popping hand-crafted rules from agenda.
The goal state tracking process is overlooked in
some later studies of data-driven USs (Asri et al.,
2016; Gür et al., 2018; Papangelis et al., 2019),
where the US is always conditioned on the whole
initial user goal at each turn. Some data-driven USs
explicitly track goal states but employ binary vec-
tors (Kreyssig et al., 2018; Lin et al., 2021; Tseng
et al., 2021). The US in (Takanobu et al., 2020) rep-
resents goal states by tokens, which is flexible, but
the US only interacts with the DS at the semantic
level (not end-to-end trainable).

3 Preliminaries

Notations According to the information flow in
a task-oriented dialog between a US and a DS as

(a) Architecture of Dialog System (DS)

(b) Architecture of User Simulator (US)

Figure 2: The generative architecture of dialog system
and user simulator in our experiments.Yellow boxes
represent the conditioning input of the model during
generation, and green boxes the targeting output.

illustrated in Figure 1, we let gt denote the user
goal state, aut the user act, ut the user utterance, bst
the system belief state, dbt the database result, ast
the system act, and rt the system response, respec-
tively, at turn t = 1, · · · , T , for a dialog of T turns.
Moreover, in this paper we are interested in build-
ing end-to-end trainable US that can interact with
the DS in natural languages. Thus, we introduce
a NLU module in the US, which takes the system
response rt as input and infer system intent. The
NLU result is denoted by but , or loosely speaking,
referred to as the user belief state. Notably, the
US belief state but denotes the US’s understanding
only about the previous system response, and ac-
cordingly is labeled as ast−1 in training. but is not
of accumulated nature, since the US uses the goal
state gt to summarize the dialog history encoun-
tered by the US3.

GPT-2-based Generative Architecture In this
work, all variables defined in the last paragraph for
the US and DS are converted to token sequences,
like in DAMD (Zhang et al., 2020). So pretrained
language models (LMs) such as GPT-2 can be fine-
tuned to build end-to-end trainable DS and US,
as will be introduced later. To be clear, GPT-2
(Radford et al., 2019) in this paper refers to the
particular class of causal LMs, which computes
conditional probabilities for next-token generation

3In contrast, the system belief state bst summarizes the
dialog history encountered by the DS. This subtle difference
makes sense, since the roles of the DS and US are different.
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via self-attention based Transformer neural net-
work (Vaswani et al., 2017). Given a particu-
lar form of conditional model, p(output|input),
where input and output are token sequences, the
GPT-2 model can be finetuned over training sam-
ples (input, output) (often referred to as training
sequences (Hosseini-Asl et al., 2020)), and after
finetuning, the model can be used for generation,
i.e., generating output after receiving input.

Generative Dialog System The main task for a
dialog system (DS) is, for each dialog turn t, to
generate (or say, predict)4 bst , a

s
t and rt, given ut

and dialog history u1, r1, · · · , ut−1, rt−1. A recent
progress in building DS is that all variables are rep-
resented by token sequences, and the workflow of
a dialog system (DST, DP and NLG) is unified into
a single sequence generation problem, which can
be accomplished by a causal LM such as GPT-2
(Hosseini-Asl et al., 2020; Liu et al., 2022). In
this paper, we employ the Markov generative ar-
chitecture (MGA) for DS, which is introduced in
Liu et al. (2022) and shows efficiency advantages
in memory, computation and learning over non-
Markov DS models like SimpleTOD (Hosseini-Asl
et al., 2020). Specifically, for DS to predict bst , a

s
t

and rt at each turn t, we use only the belief state
bt−1 and response rt−1 from previous turn along
with current user utterance ut, as shown in Figure
2(a). The DS can thus be trained via finetuning
GPT-2 by maximizing the following conditional
likelihood over labeled training sequences for su-
pervised learning (SL):

JDS-SL = log pθ(b
s
t , a

s
t , rt|bst−1, rt−1, ut)

=

|bst⊕ast⊕rt|∑

i=1

log pθ(ci|bst−1, rt−1, ut, c<i)

(1)
where ⊕ denotes the concatenation of sequences,
|bst ⊕ ast ⊕ rt| denotes the length in tokens, and
ci denotes the i-th token. The DS parameters are
actually a set of GPT-2 parameters, collectively
denoted by θ.

4 Method: Generative User Simulator

An end-to-end trainable US needs several modules
- natural language understanding (NLU) of system
responses, goal state tracking (GST), user policy

4Note that database result dbt is deterministically obtained
by querying database using the predicted bst . We omit dbt in
the discussion for simplicity.

(UP), and natural language generation (NLG). In-
spired by the recent approach of finetuning PLMs
such as GPT-2 to build end-to-end trainable gen-
erative DSs, we propose an end-to-end trainable
generative user simulator (GUS), which generally
refer to the approach of recasting all the modules
in the US (NLU, UP, and NLG) as conditional gen-
eration of tokens based on finetuning PLMs such
as GPT-2. In the following, we first introduce the
GUS model including goal state tracking and GPT-
2 based architecture. Then, we describe how GUS
is trained and used for reinforcement training of
the DS.

4.1 GUS Model
Goal State Definition Crucially, the interaction
between the user and the system is motivated by the
user goal, which is composed of user constraints
and requests such as booking a cheap hotel. The
goal state, in this paper, is defined as the uncom-
pleted part of the user goal at each turn. Similar
to Kreyssig et al. (2018), we accumulate the an-
notated user acts backwards turn by turn to obtain
the goal state annotation at each turn. The accumu-
lation process is illustrated in Appendix A.1.The
goal state obtained at the first turn corresponds to
the initial user goal for the whole dialog session.

Goal State Tracking Given the goal state an-
notations at each turn, the US can be trained via
teacher-forcing to mimic the user behaviors. When
the US is applied to interact with the DS for evalu-
ation or for reinforcement training of the DS, the
US needs to track the completion process of the
goal to update the goal state turn by turn, which we
call goal state tracking. There are three types of
user intents in the goal state gt - inform, book and
request. The slots and values for the first two types
of intents in gt are denoted by gconstraint

t and those
of the request intent as grequest

t . The update rule of
gt at turn t is designed to be as follows:

gconstraint
t = gconstraint

t−1 ⊖ au,inform
t−1

grequest
t = grequest

t−1 ⊖ bu,inform
t

(2)

where au,inform
t−1 , bu,inform

t are the informable slots
and values in user act aut−1 and user belief state
but respectively and ⊖ denotes removing the cor-
responding slots and values. Moreover, the slot
values in the initial user goal may be changed dur-
ing the interaction (i.e., goal change). When the
DS expresses no-offer intent, which means no en-
tities in the database satisfy the constraints of the
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goal, we randomly select one slot in the no-offer
intent and replace its value with another value in
the ontology.

GPT-2-based Architecture The main task for a
US is, conditional on the user goal, to iteratively
understand the system response, track goal state,
decide user act, and generate user utterance. In this
work, we find that the recent approach of finetun-
ing GPT-2 for conditional generation can be simi-
larly applied to build US. Specifically, we employ
Markov generative architecture (Liu et al., 2022).
The US is designed to firstly infer the system intent,
i.e., user belief state but of turn t from the previous
system response rt−1, which could be modeled as
pϕ(b

u
t |rt−1). After obtaining but , the goal state will

be updated according to the rule in Eq. (2). Then,
the US will generate user act and user utterance
sequentially conditioned on the previous system
response, user belief state, and the updated goal
state. The resulting US is called GUS and could
be modeled as pϕ(a

u
t , ut|rt−1, b

u
t , gt). The GUS

parameters are actually another set of GPT-2 pa-
rameters, collectively denoted by ϕ.

4.2 GUS Training
The GUS model can thus be trained via finetuning
GPT-2 by maximizing the following conditional
likelihood over labeled training sequences for su-
pervised learning (SL):

JUS-SL = log pϕ(b
u
t |rt−1)

+ log pϕ(a
u
t , ut|rt−1, b

u
t , gt)

(3)

Note that during supervised learning, the user belief
state but is labeled by directly copying the system
act ast−1 from the previous turn.

4.3 Reinforcement Optimization of DS
through Interaction with US

RL Setup The DS and US described above
will first be trained using supervised learning
with the objectives in Eq. (1) and Eq. (3) respec-
tively. After supervised learning, we can per-
form RL optimization on the DS through inter-
actions with the US. The DS agent view the US
as the environment and use its conditional model
pθ(b

s
t , a

s
t , rt|bst−1, rt−1, ut) as its policy. Here the

policy of the DS involves generating not only sys-
tem act ast , but also belief state bst and system re-
sponse rt. This is different from some previous
studies of learning reinforced DS, e.g., (Liu and
Lane, 2017; Papangelis et al., 2019; Tseng et al.,

2021), which only use RL to optimize the selec-
tion of system acts (but all use traditional LSTM
seq2seq architectures). However, thanks to the rep-
resentation power of GPT-2, recursively predict (or
say, decide about) bst , ast and rt in one policy yields
the best performance in our experiment. In Sec-
tion 7.3, we compare different schemes for policy
definition for the DS agent with more discussions.

RL Optimization We apply the policy gradient
method (Sutton et al., 2000) to optimize the DS for
RL. We first let the two agents interact with each
other based on the user goals from the goal gen-
erator provided by ConvLab-2 (Zhu et al., 2020).
Then we calculate the reward Rt for each turn, as
detailed below. The return Ui,t for the action of
turn t at the i-th step is γ|At|−iRt, where γ is the
discounting factor and |At| is the policy sequence
length of turn t. We update the DS with the follow-
ing policy gradients:

∇θJDS-RL =

|bst⊕ast⊕rt|∑

i=1

Ui,t∇θ log pθ(ci) (4)

where pθ(ci) denotes pθ(ci|bst−1, rt−1, ut, c<i).

Reward Settings A number of different settings
for reward have been studied, as described in
the following. The three settings are separately
tested, and the experimental results are given in
Section 7.2.
1) Success. If a dialog is successful, we set the
reward of each turn to 1, otherwise it is set to be 0;
2) A turn-level synthetic reward similar to Tseng
et al. (2021); Takanobu et al. (2020), which consists
of requesting reward (+0.1 for each), repeating pun-
ishment (-0.5 for each) and task completion reward
(the proportion of tasks completed) of the DS;
3) A Sigmoid synthetic reward obtained by map-
ping the synthetic reward to [0,1] interval using
the Sigmoid function. This setting is designed to
exclude the influence of the value range of reward
because the value range is different between the
Success reward and the synthetic reward.

5 Experiments

5.1 Dataset
Experiments are conducted on MultiWOZ2.1 (Eric
et al., 2020), which is an English multi-domain
task-oriented dialog dataset of human-human con-
versations. It contains 10.4k dialogs, collected in
a Wizard-of-Oz setup over seven domains. The
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dataset contains the annotations of system belief
state, system act, and user act for every turn.

5.2 Evaluation Metrics
Evaluating the quality of a US is not trivial. The
performance of the reinforced DS trained with a
specific US gives an indirect assessment of the
quality of the US. Considering that a main purpose
of developing USs is to help train RL based DSs,
this indirect assessment makes sense and is widely
employed (Kreyssig et al., 2018; Shi et al., 2019;
Lin et al., 2021). We conduct both automatic evalu-
ation and human evaluation of the DSs trained with
different USs. Additionally, we also ask human
graders to directly assess the performance of dif-
ferent USs, by reading and scoring the generated
utterances from the USs.
Automatic Evaluation It could be interaction-
based or corpus-based. For both manners, we can
calculate Inform and Success for measuring the
performance of the DSs. Inform Rate measures
how often the entities provided by the system are
correct. Success Rate refers to how often the sys-
tem is able to answer all the requested attributes by
user. BLEU Score is used to measure the fluency of
the generated system responses when conducting
corpus-based evaluation.

Human Evaluation We conduct human evalua-
tion, where human graders are recruited to assess
the quality of dialogs generated by the US and the
DS trained with it. Similar to Su et al. (2021), for
each dialog, the grader will score the conversation
on a 3-point scale (0, 1, or 2)5 by the following 3
metrics for the DS and 2 metrics for the US:

• Success. This metric measures if the DS suc-
cessfully completes the user goal by interact-
ing with the US;

• DS Coherency (DS-coh). This metric mea-
sures whether the system’s response is logi-
cally coherent with the dialogue context;

• DS Fluency (DS-Flu). This metric measures
the fluency of the system’s response.

• US Coherency (US-Coh). This metric mea-
sures whether the simulator’s utterance is log-
ically coherent with the dialogue context;

• US Fluency (US-Flu). This metric measures
the fluency of the simulator’s utterance.

5Three scales (0, 1 and 2) denote three degrees - not at all,
partially and completely, respectively.

5.3 Baseline

The DS model is as described in Section 3. We
compare GUS with the classic rule-based simulator
ABUS (Schatzmann et al., 2007). We use the sim-
ulator in the ConvLab-2 (Zhu et al., 2020) toolkit,
which provides an instantiation of ABUS on Multi-
WOZ (Budzianowski et al., 2018), including BERT-
based NLU and template-based NLG. The ABUS
in ConvLab-2 has a goal generator module, which
we use for driving the interaction between the DSs
and the proposed GUS. Remarkably, the TUS pa-
per (Lin et al., 2021) has revealed the shortcoming
of VHUS (Gür et al., 2018), which performs much
worse than ABUS. Also, it is concluded that TUS
has a comparable performance to the rule-based
ABUS in cross-model evaluation. Thus, in this pa-
per, we mainly compare GUS with ABUS, which
is a very strong baseline.

6 Main Results

6.1 Cross-Model Evaluation

Cross-model evaluation is a type of automatic eval-
uation (Schatztnann et al., 2005) to compare differ-
ent USs. The main idea is that if the DS trained
with a specific US performs well on all USs (not
just on the one that the DS was trained with), it
indicates the specific US with which the DS was
trained is of good quality (realistic), and thus the
DS is likely to perform better on real users.

Specifically, we first train a DS and a US sep-
arately on training data based on the supervised
learning objectives described in Eq. (1) and Eq. (3).
The resulting models are referred to as DS-SL and
GUS respectively. Then we further optimize DS-
SL by policy gradient in Eq. (4) on interaction with
either ABUS or GUS, and obtain DS-ABUS and
DS-GUS respectively. For either of ABUS and
GUS, RL trainings (all starting from DS-SL) are in-
dependently taken for three times with different ran-
dom seeds. Each specific DS model is then tested
on both ABUS and GUS. We use the same 1000
randomly generated goals for each test. Further im-
plementation details can be found in Appendix A.2.
Table 2 shows the cross-model evaluation results6.

It can be seen from Table 2 that the DS trained
with GUS (DS-GUS) performs well on both ABUS

6Similar tables to Table 2 have been used in previous work
such as NUS (Kreyssig et al., 2018) and TUS (Lin et al.,
2021). A common practice of reading such tables is row-
by-row comparison. This is exactly what the cross-model
evaluation means.
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DS \ US
ABUS GUS

Inform Success Inform Success
DS-SL 0.864 0.791 0.781 0.736
DS-ABUSbest 0.885 0.816 0.783 0.741
DS-GUSbest 0.881 0.810 0.864 0.808
DS-ABUSavg 0.889 0.793 0.793 0.735
DS-GUSavg 0.872 0.801 0.859 0.802

Table 2: Cross-model evaluation results. The subscripts
best and avg denote the best and the average from 3 in-
dependent RL experiments with different random seeds.

and GUS, while the DS trained with ABUS (DS-
ABUS) only performs well on ABUS and achieves
much lower Inform and Success when tested with
GUS. This indicates the superiority of GUS over
ABUS, being more helpful in training reinforced
DSs that perform well on both USs. Moreover, DS-
GUS also outperforms the supervised baseline (DS-
SL) on both USs. This shows the practical benefit
brought by training DSs via RL on interaction with
the proposed GUS. Such comparison of RL and SL
is overlooked in some prior work, as reviewed in
Table 1.

6.2 Corpus-based Evaluation

Corpus-based evaluation has become a widely-used
type of automatic evaluation to compare different
end-to-end DSs. In the context of studying USs,
it is relevant to conduct corpus-based evaluation
for the following two aspects. First, running test-
ing of the DS trained with a specific US over a
fixed testing set of dialogs could be an indirect as-
sessment of the quality of the US. Second, it is
possible for the trained DS via RL to achieve high
task success and yet not generate human language
(Zhao et al., 2019), particularly when the reward is
mainly defined to encourage task success. With the
fixed testing set, we could calculate BLEU which
measures the NLG performance of the trained DS.

We use the standard evaluation scripts from
Nekvinda and Dušek (2021) for corpus-based eval-
uation. The results are shown in Table 3 with some
interesting findings. First, the DS trained with GUS
(DS-GUS) achieves higher combined score than
the DS trained with ABUS (DS-ABUS). This is
consistent with the results in Table 2 and again
demonstrate the advantage of GUS over ABUS.
Second, note that DS-GUS is initialized from DS-
SL and further trained via RL on interaction with
GUS, and Table 2 shows that DS-GUS improves
over DS-SL not only in Inform and Success but

DS Inform Success BLEU Combined
AuGPT (Kulhánek et al., 2021) 76.6 60.5 16.8 85.4
SOLOIST (Li et al., 2020) 82.3 72.4 13.6 90.9
UBAR (Yang et al., 2021) 83.4 70.3 17.6 94.4
DS-SL 84.10 72.10 19.24 97.34
DS-ABUSbest 84.20 71.00 19.44 97.04
DS-ABUSavg 85.37 69.70 19.10 96.64
DS-GUSbest 85.70 74.60 19.80 99.95
DS-GUSavg 85.17 73.33 19.83 99.01

Table 3: Corpus-based evaluation. Above the dashed
line are GPT-2-based results from the official website
of MultiWOZ. Below are the results from DS-SL and
the DSs trained with ABUS and GUS respectively.

also in BLEU. This result indicates that RL train-
ing of the DS with GUS does not suffer from the
tradeoff problem between policy learning and NLG
in offline RL (Zhao et al., 2019)7, achieving higher
success and being faithful to human language. See
more discussions in Section 7.3.

6.3 Human Evaluation

We further perform human evaluation of the perfor-
mances of USs and DSs. For each pair of US and
DS, 100 dialogs were gathered, which were scored
by 5 human graders. The details of evaluation met-
rics have been described in Sec. 5.2 and the results
are shown in Table 4. For convenience, we refer to
the results of each row by the name of the DS in
the table. It can seen that the overall performance
of DS-GUS is superior over both DS-ABUS and
DS-SL. Further, we conduct significance tests by
comparing either DS-ABUS or DS-SL with DS-
GUS respectively, using the matched-pairs method
(Gillick and Cox, 1989) and add a superscript ∗

to the score in the first two rows in Table 4 if the
p-value is less than 0.05. All the specific p-values
can be seen in Appendix A.4. The results show
that DS-GUS significantly improves over DS-SL
for Success and US-Coh, while the differences in
terms of DS-Coh, DS-Flu and US-Flu are not sig-
nificant. Moreover, all the human evaluation met-
rics by DS-GUS are stronger than or equal to those
by DS-ABUS. Particularly, DS-GUS significantly
outperforms DS-ABUS for DS-Flu, US-Coh and
US-Flu. This indicates that GUS is able to generate
more coherent and fluent utterances than ABUS.
To illustrate this point, we provide some generated
dialogues in Appendix A.3.

7This problem for offline RL is further studied and allevi-
ated in Lubis et al. (2020).
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DS US Success DS-Coh DS-Flu US-Coh US-Flu
DS-ABUS ABUS 1.71 1.51 1.65∗ 1.27∗ 1.30∗

DS-SL GUS 1.73∗ 1.60 1.85 1.61∗ 1.88
DS-GUS GUS 1.84 1.52 1.79 1.75 1.90

Table 4: Human evaluation of the dialogs generated
by different DSs and USs. The score with ∗ in the
first two rows denotes the difference between this score
and the score in the last row (DS-GUS with GUS) is
significant (p-value<0.05); otherwise, the difference is
not significant (p-value>=0.05).

US Inform Success
ABUS 0.863 0.790
GUS 0.825 0.777
GUS w/o GST 0.743 0.502

Table 5: The ablation results about goal state tracking
(GST). The DS trained with GUS w/o GST is tested on
ABUS, GUS and GUS w/o GST respectively.

7 Ablation Study

7.1 The Importance of Goal State Tracking

In our GUS model, we use Eq. (2) to update
the goal state at every turn. In the section, we
consider a variant of GUS, which sets the goal
state at all turns to be the initial goal, that is,
gt = g0, t = 1, ..., T , like in Asri et al. (2016);
Gür et al. (2018); Papangelis et al. (2019). Such
model is referred to as GUS w/o GST, and could
be similarly trained according to Eq. (3). Then
we train a DS with this US (called “DS-GUS w/o
GST”) and test it with ABUS, GUS and GUS w/o
GST respectively. The results are shown in Table 5.
We can see that the Inform and Success rates ob-
tained by “DS-GUS w/o GST” are lower than those
by DS-GUS as shown in Table 2, when testing on
ABUS and GUS. This indicates the importance of
using GST in GUS. Besides, we can see that the re-
sults are pretty low when testing on GUS w/o GST.
Presumably, this is because GUS w/o GST cannot
accurately distinguish the uncompleted part in the
complex goal, which will easily cause omission
and repetition when generating user acts.

7.2 Different Reward Settings

The results of optimizing DS on GUS using differ-
ent reward settings are reported in Table 6. It is
found that all reward settings achieve better results
than supervised baseline (Reward=None) and the
synthetic reward setting achieves the best result,
which is reasonable since the fine-grained rewards
reflect more than simple success rate in terms of

Reward Inform Success
None 0.781 0.736
Success 0.842 0.787
Synthetic 0.864 0.808
Sigmoid synthetic 0.850 0.780

Table 6: Interaction-based results of testing DS-GUS
on GUS under different reward settings, as introduced
in Section 7.2. “None” denotes the testing results of
DS-SL with GUS, as also reported in the first row in
Table 2.

Policy Inform Success
bst ⊕ ast ⊕ rt 0.864 0.808
ast ⊕ rt 0.845 0.770
ast 0.848 0.796

Table 7: The ablation experiments of using different
policy schemes.

the nature of the tasks (Tseng et al., 2021). All
RL results in this paper are based on this setting of
reward, unless here for ablation study.

7.3 Different Policy Schemes for DS

The policy in RL refers to the probabilistic map-
ping from states to actions. Previous studies of
learning reinforced DS, e.g., (Liu and Lane, 2017;
Papangelis et al., 2019; Tseng et al., 2021), mainly
employ RL to optimize the policy module, i.e., use
system acts for actions. In contrast, the policy of
DS-GUS and DS-ABUS involves generating not
only system act ast , but also belief state bst and
system response rt, which can be represented as
bst ⊕ ast ⊕ rt, as illustrated in Eq. (4). To compare
policy schemes for reinforced DS, we try two other
policy schemes when optimizing DS-GUS. The
first policy scheme only involves the generation of
system act ast and the second one involves the gen-
eration of both system act ast and system response
rt. We denote the two policy schemes as ast and
ast ⊕ rt respectively. Table 7 shows the interaction
results when the DS-GUS trained under different
policy schemes is tested with GUS.

It can be seen from Table 7 that using bst⊕ast⊕rt
for policy achieves the highest Inform and Success
rate. We provide two points, which may explain the
advantage of our model in using bst⊕ast⊕rt for RL.
First, since the DST, DP and NLG modules in GPT-
2 based DS share the model parameters, parameter
adjust in one module will affect other modules.
Only optimizing DP during RL without considering
other modules may mislead other modules. Using
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bst ⊕ ast ⊕ rt leads to better overall optimization
and decision-making. Second, the balance between
policy learning and NLG, which was a concern
in previous studies when using modular or small-
capacity architectures (Zhao et al., 2019), could be
relieved, thanks to the high-capacity of GPT-2.

8 Conclusion

In this paper, towards developing an end-to-end
trainable US for multi-domains, a generative user
simulator (GUS) with GPT-2 based architecture
and goal state tracking is proposed and systemat-
ically evaluated. We train GPT-2 based DSs and
USs and conduct cross-model evaluation, corpus-
based evaluation and human evaluation. The results
show that the DS trained with GUS outperforms
both the supervised trained DS and the DS trained
with ABUS. The human evaluation further con-
firms the superiority of GUS and shows that GUS
can generate much more coherent and fluent utter-
ances than ABUS. Moreover, GUS is simple and
easy to use, in addition to its strong performance.
Hope this work will stimulate further work on de-
veloping and using user simulators in the study of
building dialog systems.

9 Limitations

There are some limitations of this work. First, due
to computational constraints, both the DSs and the
USs are experimented based on a distilled version
of GPT-2. Studies using larger GPT-2 and other
classes of larger PLMs such as T5 (Raffel et al.,
2020) would enhance our results in this paper. Sec-
ond, we only utilize the policy gradient method for
RL in this paper. Other advanced RL methods such
as proximal policy optimization (PPO) and actor-
critic are also worth trying in future work. Those
being said, while we agree that experimenting with
larger PLMs and more complex RL methods are
meaningful, we believe the extensive experiments
presented in this paper (cross-model evaluation,
corpus-based evaluation, human evaluation, and
ablation studies) can well support the evaluations
of GUS and should not affect the main finding and
contribution of this paper.
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Figure 3: An example of how turn-level goal state anno-
tations are obtained. The blue boxes are user acts and
the yellow ones are goal states.

A Appendices

A.1 Data Processing
We delexicalize system responses following Zhang
et al. (2020) to reduce surface language variability.
Specifically, we replace values in the ontology with
specific placeholders such as [value_name] and
[value_price]. The proposed DS and US are both
trained on the delexicalized dataset. During human
evaluation or interaction with ABUS, the system
responses need to be lexicalized. We then replace
those placeholders with corresponding values in the
predicted entities by querying the given database
with the predicted belief states.

For building US, we need to accumulate the an-
notated user acts backwards turn by turn to obtain
the goal state annotation at each turn as we de-
scribed in Sec 4. The accumulation process is
depicted in Figure 3.

A.2 Implementation Details
We use Huggingface Transformers repository. GPT-
2 based DSs and USs are initialized with DistilGPT-
2 (Sanh et al., 2019), a distilled version of GPT-2,
with 6 transformer decoder layer. During super-
vised learning, we use the AdamW optimizer and a
linear scheduler with 20% warm up steps and max-
imum learning rate 10−4. The minibatch base size
is set to be 8 with gradient accumulation steps of 4.
During RL, we no longer use scheduler and fix the
learning rate to 2× 10−5. The minibatch base size
is set to be 16 with gradient accumulation steps
of 12. For each interaction, the dialog will end in
the following three cases: 1) both the DS and US
generate bye intent; 2) the goal state of the US is
empty; 3) the content of the current turn is exactly
the same as that of the previous turn. Besides, to

SNG0616

User
Sorry, actually I need an expensive restaurant in
the north. The first on your list would be great.

Bspan [restaurant] pricerange expensive area north
Act [restaurant] [inform] name
Resp Sure how about [value_name]?
BspanSL [restaurant] pricerange expensive area north food north
ActSL [restaurant] [nooffer] food area [request] food

RespSL
I am sorry, there are no [value_food] restaurants in the
[value_area] . Would you like to try a different type of cuisine?

BspanRL [restaurant] pricerange expensive area north
ActRL [restaurant] [inform] choice price area [request] food

RespRL
There are [value_choice] [value_price] restaurants in
the [value_area] . What type of food would you like?

Table 8: One dialog turn in the test set. Bspan and Act
denote the sequence forms of belief state and system
act. The subscript SL and RL represent the supervised
trained model DS-SL and the RL model DS-GUS re-
spectively.

increase the diversity of dialogues, beam search
decoding is applied during generating user acts and
system acts. The beam size is set to be 10 and the
final act will be sampled by probability from the
10 candidates. All the SL and RL experiments are
conducted on a single 16GB Tesla-P100 GPU.

A.3 Case Study

Interaction Case To illustrate the advantage of
GUS over ABUS, we let DS-ABUS and DS-GUS
interact with their corresponding USs under the
same user goal. The generated dialogs are shown
in Table 9. It can be seen that the user utterances
generated by ABUS are unlike natural languages
and sometimes logically coherent. For instance,
ABUS says “I want a train” when it has said “please
book the train for me” before in the first turn. On
the contrary, GUS can generates very fluent and
logically coherent utterances, and is able to under-
stand the system response and provide necessary
information to complete the dialogue.

Corpus-based Evaluation Case We can see
from Table 3 that DS-GUS improves the Success
rate over DS-SL on test set. We show an dialog
example in Table 8 to explain how the RL improves
the DS performance. In this turn, DS-SL predicts
a wrong Bspan with a redundant slot “food” and
incorrect value “north”. As a result, no entity can
be found when querying database and DS-SL gen-
erates “nooffer” intent, which finally leads to an
unsuccess dialog. However, DS-GUS can predict a
correct Bspan and generate an appropriate system
act in this turn. This indicates that RL can improve
the ability of dialog state tracking of DS, thus im-
proving the success rate. In fact, this advantage
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User Goal
Train: Inform (arrive=12:45; day=Thursday; departure=Birmingham new street; destination: Cambridge),

Book (people=8)
Attraction: Inform (area=centre), Request (postcode, phone)

Dialogue generated through the interaction between DS-ABUS and ABUS
user1: Please book the train for me. I am departing from Birmingham new street. I want a train leaving on Thursday.

I would like to go to Cambridge please.
resp1: There are 19 trains that meet your criteria. What time would you like to leave?
user2: Please pick one for me. I don’t care about the leave of the train.
resp2: Tr4235 leaves at 05:40. Would you like me to book it for you?
user3: I want to get there by 12:45.
resp3: Tr4235 arrives at 08:23. Would you like me to book it for you?
user4: I would like 8 tickets please.
resp4: Booking was successful, the total fee is 600.8 pounds payable at the station. Reference number is: 0000002206.

Is there anything else I can help you with?
user5: Can you help me plan a trip to see a particular attraction? I’d like something in the centre.
resp5: There are 44 theatre and architecture in the centre of town. What type of attraction are you interested in?
user6: Just select one for me. I don’t care about the type of the attraction.
resp6: There are 44 museums in the centre of town. May I suggest Adc theatre ?
user7: Sounds good. Could I get the phone number of the attraction? Can you give me the postcode of the attraction?
resp7: The phone number is 01223300085 and the postcode is CB58AS. Is there anything else I can help you with?
user7: That’s all the help I need. Take care. Bye.
resp7: Thank you for contacting us and have a nice day.

Dialogue generated through the interaction between DS-GUS and GUS
user1: I am looking for places to go in the centre of town.
resp1: There are 44 attractions in the centre. Do you have a specific type in mind?
user2: No, I don’t have a preference.
resp2: I would recommend Adc Theatre on Park Street. It is free to get in.
user3: That sounds great. Can I get the phone number and postcode?
resp3: The phone number is 01223300085 and the postcode is CB58AS. Is there anything else i can help you with?
user4: I am also looking for a train going to Cambridge.
resp4: Where will you be departing from and what day would you like to travel?
user5: I will be departing from Birmingham new street on Thursday.
resp5: There are 19 trains that meet your criteria. Do you have a preferred departure or arrival time?
user6: I would like to arrive by 12:45. I would like to book for 8 people.
resp6: Booking was successful, the total fee is 600.8 pounds payable at the station. Reference number is: 0000002206.
user7: Thank you so much! that is all I need.
resp7: Thank you for contacting us and have a nice day.

Table 9: Dialogs generated through the interaction between DSs and USs.

comes from the special policy scheme employed in
this paper, as discussed in Sec 7.3.

A.4 Significance Test
In Sec. 6.3, we conduct significance tests to show
whether the differences between the first two
groups and the last group in Table 4 are signifi-
cant. The p-values are listed in Table 10.

DS Success DS-Coh DS-Flu US-Coh US-Flu
DS-ABUS vs DS-GUS 0.065 0.535 0.036 0.000 0.000
DS-SL vs DS-GUS 0.045 0.220 0.273 0.020 0.639

Table 10: Significance tests for human evaluation. We
refer to the results of each row in Table 4 by the name
of the DS.
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Abstract

Reinforcement learning (RL) has emerged as
a promising approach to fine-tune offline pre-
trained GPT-2 model in task-oriented dialogue
(TOD) systems. In order to obtain human-like
online interactions while extending the usage
of RL, building pretrained user simulators (US)
along with dialogue systems (DS) and facilitat-
ing jointly fine-tuning via RL becomes preva-
lent. However, joint training brings distribu-
tional shift problem caused by compounding
exposure bias. Existing methods usually it-
erative update US and DS to ameliorate the
ensued non-stationarity problem, which could
lead to sub-optimal policy and less sample ef-
ficiency. To take a step further for tackling
the problem, we introduce an Offline-to-oNline
Co-Evolutional (ONCE) framework, which en-
ables bias-aware concurrent joint update for
RL-based fine-tuning whilst takes advantages
from GPT-2 based end-to-end modeling on US
and DS. Extensive experiments demonstrate
that ONCE builds high-quality loops of pol-
icy learning and dialogues data collection, and
achieves state-of-the-art online and offline eval-
uation results on MultiWOZ2.1 dataset. Open-
sourced code will be implemented with Mind-
spore (MS, 2022) and released on our home-
page 1 .

1 Introduction

Traditionally, task-oriented dialogue (TOD) sys-
tems are trained via pipeline approaches by decom-
posing the task into multiple independent modules
(Wen et al., 2017; Chen et al., 2020). Recently,
recasting the TOD as a unified language modeling
task with leveraging pretrained language model like
GPT-2 (Radford et al., 2019) becomes prevailing,
which thoroughly avoids the cross-module error
accumulation problem in the pipeline approach.
However, GPT-2 suffers from exposure bias (He

1https://gitee.com/mindspore/models/tree/
master/research/rl/CETOD.

et al., 2019; Zhang et al., 2020a; Arora et al., 2022)
problem that the model has never been exclusively
exposed to its own predictions during training thus
leads to accumulated errors in the output generation
process during test. To avoid such problem, lever-
aging reinforcement learning (RL) could be one
of the antidotes (Keneshloo et al., 2020) because
the optimization direct relies on its own outputs
with rewards (e.g., success rate) as update guidance
rather than the ground-truths.

RL requires large amounts of online interactions
for training. However, interacting with human
users is time-consuming and costly. An intuitive
way for establishing communications with an RL-
based dialogue system (DS) is training a GPT-2
based user simulator (US) which learns from real
data to mimic human behavior (Shi et al., 2019).
Such interaction paradigm brings additional expo-
sure bias problem that DS exposed to both unseen
input and output distributions. To resolve such
problem, prior works extended the usage of RL
for online joint fine-tuning (Tseng et al., 2021).
However, serving as each other’s environment to
interact with, joint update makes both US and DS
learning under non-stationarity conditions (Liu and
Lane, 2017), which is challenging since the need
of continuous adaptation of distribution shift (Al-
Shedivat et al., 2018) caused by the introduced
compounding exposure bias. To be specific, the
compounding exposure bias is the deviation due
to self-carrying bias and unseen input distribution
from the environment in the process of online in-
teractions.

Existing methods usually employ iterative joint
update (Fig. 1(a)) to implicitly address the problem
of distribution shift along the fine-tuning process.
Unfortunately, such paradigm ameliorates the prob-
lem by sacrificing sample efficiency and might lead
to sub-optimal policy. In order to take a step further
for tackling the distributional shift problem, we pro-
pose an Offline-to-oNline Co-Evolutional (ONCE)
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Figure 1: (a) Iterative joint update usually serial update US first and then update DS, while (b) co-evolutional joint
update use the same batch of data to update US and DS simultaneously. The online evaluation results (c) show that
our update method is superior to iterative update regarding dialogue success rate and inform rate. The co-evolutional
joint update aims to build high-quality loops for policy learning and data collection.

framework, which enables bias-aware concurrent
joint update for RL-based fine-tuning with forward
filter and backward constraint through the same
batch of online data (Fig. 1(b)) whilst takes advan-
tages from GPT-2 based end-to-end modeling on
US and DS. The forward filter enables continued
training from pretrained models by picking out fa-
tal biased samples via human priors. The backward
constraint performs on both US and DS by taking
uncertainty of transitions (Yu et al., 2020) into con-
sideration to address the problem of distribution
shift by trading off the risk of making mistakes
and the benefit of diverse exploration. With such
a dual mechanism, we build high-quality loops for
policy learning and online data collection as shown
in Fig. 1(b). Our contributions can be summarized
as follows:

• We propose a novel bias-aware concurrent
joint update framework for US and DS policy
fine-tuning while ameliorating the distribu-
tional shift problem with engaging the com-
ponents of forward filter and backward con-
straint.

• ONCE provides end-to-end modeling on US
and DS based on GPT-2 with the full ability
to understand, make decisions, generate lan-
guage, and enable naturally joint fine-tuning
with the rewards that been explored from both

different hierarchical granularity and dialogue
sub-task optimization combinations.

• Extensive experiments demonstrate that
ONCE outperforms state-of-the-art methods
on MultiWOZ2.1 and has achieved 79.0 suc-
cess rate, 87.5 inform rate and the 101.5 com-
bined score.

2 Related Work

Pretrained language model for US and DS. The
approaches of solving TOD have been transformed
from traditional pipeline methods (Zhong et al.,
2018; Zhang et al., 2019a; Chen et al., 2019) to
end-to-end manner (Madotto et al., 2018; Lei et al.,
2018; Zhang et al., 2020b; Zhao et al., 2022). With
the development of pretrained language models
such as GPT-2, GPT-based methods become domi-
nant in TOD, e.g., SimpleTOD (Hosseini-Asl et al.,
2020), SOLOIST (Peng et al., 2020), AuGPT (Kul-
hánek et al., 2021), UBAR (Yang et al., 2021). The
literature of US modeling can be roughly sum-
marized into two types: one is rule-based simu-
lation such as the agenda-based user simulator (Li
et al., 2016; Shah et al., 2018a), easy to apply but
very limited under complex scenarios; the other is
data-driven US modeling, (Eshky et al., 2012; Asri
et al., 2016; Kreyssig et al., 2018; Shi et al., 2019;
Shah et al., 2018a; Zhang et al., 2019b), which is
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more robust but requires large amounts of manual
annotations and system-corresponding data. The
most widely used benchmark dataset MultiWOZ
(Budzianowski et al., 2018b) have about 8000 dia-
logues. Smaller datasets such as DSTC2 (Hender-
son et al., 2014) and M2M (Shah et al., 2018b) con-
tain 1600 and 1500 dialogues respectively. In this
work, ONCE leverages GPT-2 for end-to-end mod-
eling of US and DS with MultiWOZ2.1 dataset.

Reinforcement Learning methods in TOD. Re-
inforcement learning aims to learn optimal policy
to maximize long-term cumulative rewards. With
different data collecting paradigm for policy update,
(Sutton and Barto, 1998) divides RL into online RL
and offline RL. Apply offline RL in TOD can avoid
explicit construction of US and directly learn from
offline dataset (Zhou et al., 2017; Lin et al., 2021;
Jeon and Lee, 2022). However, offline RL struggles
with a major challenge (Kumar et al., 2020) that
it may fail due to overestimation of values caused
by distribution shift between dataset and learning
policies. Online RL (Gur et al., 2018; Tseng et al.,
2021) needs to design a US to interact with DS (act-
ing as their opponent’s environment) and generate
dialogues data which can be further used for policy
optimization. To improve the sample efficiency
of deep RL, (Wu et al., 2020) apply model-based
RL which incorporates a model-based critic for the
TOD system. ONCE builds the framework of US
and DS through offline supervised learning (SL) to
online RL. The offline stage focuses on building
US and DS that communicate using natural lan-
guage, whereas the online stage optimizes dialogue
policy using high-quality generated data.

Joint update of US and DS. The joint optimiza-
tion scheme for end-to-end US and DS is the most
relevant research direction of our work. (Takanobu
et al., 2020) follows the idea of multi-agent rein-
forcement learning, which treats DS and US as
two dialogue agents and utilizes role-aware reward
decomposition in joint optimization. (Papangelis
et al., 2019) learn both US and DS, but only ap-
plied in the single-domain dataset (DSTC2). In
addition, most of them are based on traditional net-
work architectures LSTM (Liu and Lane, 2017;
Tseng et al., 2021), (Liu et al., 2022) firstly build a
GPT-2 based trainable US. And in the way of joint
update implementation, they (Liu and Lane, 2017;
Liu et al., 2022) usually employ iterative joint up-
date to weaken non-stationarity problem, which
chooses to fix the system and update user first, and

update system after obtaining a better user (Fig.
1(a)). ONCE is a co-evolutional joint fine-tuning
framework (Fig. 1(b)) to tackle the distribution
shift problem, which ameliorates the compounding
exposure bias while ensuring stationarity.

3 Offline Supervised Learning for User
Simulator and Dialogue System

To enable our online co-evolutional joint update
framework, we first build DS and US via SL
on the MultiWOZ2.1 dataset to establish com-
munications via natural language between them.
Offline-to-online is a paradigm that leverages on-
line RL to fine-tune offline pretrained models and
co-evolutional update was only conducted in the
online RL.

3.1 Architecture Design
To simulate the entire dialogue process and infor-
mation flow in real world, the end-to-end architec-
ture of US and DS is designed as shown in Fig. 2(b).
During the training phase, a pretrained language
model such as GPT-2 is tuned to produce a condi-
tional generative model. The whole input sequence
ct as described below: for US, the natural language
sequential pairs {sr, uu}1:t−1 of system response
srt and user utterance uut is concatenated with the
user’s understanding unt of dialogue history, dy-
namic goal state gt, user act uat, and current user
utterance uut, i.e.,

cUS
t = {sr, uu}1:t−1 ⊕ unt ⊕ gt ⊕ uat ⊕ uut (1)

where ⊕ serves as the operation of concatenation,
specific details are shown in Fig. 2(b). The natural
language sequential pairs {uu, sr}1:t−1 is highly
symmetric for DS and is concatenated with the
belief state bst, database query result dbt, system
act sat and current system response srt, i.e.,

cDS
t = {uu, sr}1:t−1 ⊕ bst ⊕ dbt ⊕ sat ⊕ srt (2)

3.2 Offline Supervised Learning
The training objective of offline supervised learning
is the language modeling conditional likelihood
objective (Bengio et al., 2000) as shown in Eq. 3:

L#

SL =

|C|∑

i

logP (c#i |c#<i) (3)

where # denote US or DS, and | · | is the length
of sequence, which maximizes the probability of
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(a) Overall view of framework: ONCE. (b) Architecture of US and DS.

Figure 2: (a) The overall view of our framework ONCE. We first obtain US and DS through offline SL and then
use online RL and co-evolutional update with forward filter and backward constraint to further optimize dialogue
policies. (b) The architecture of our end-to-end (NLU or DST, POL, and NLG) US and DS.

the next word prediction, and it is the same for US
and DS. In the online interactive phase, the US
generates under the condition of a completed goal
and history, while the DS is conditioned on the
external database and history. First, they generate
an understanding unt or bst of the content based
on previous context history. Then the goal state gt
and dbt are added to form a new sequence, lastly
producing their corresponding actions uat or sat
and delexicalized responses srt or uut.

4 Online Reinforcement Learning for
User Simulator and Dialogue System

With US and DS obtained from offline learning
as policy initialization, co-evolutional updates are
performed with forward filter and backward con-
straint. We present how online RL works and the
corresponding hierarchical dense reward settings
in the following section.

4.1 Co-Evolutional Joint Update

In TOD tasks, US tries to fully express the entire
goal and responds to DS, while DS searches for
entities that meet the requirements and replies in
accordance with the request of US, finally they
complete the dialogue goal successfully; it is essen-
tial to joint update which improves coordination
and synchronization between US and DS.

In our framework ONCE shown in Fig. 2(a), it is
crucial to accelerate online RL using offline learned

policies of US πUS
θ and DS πDS

θ . However, DS and
US tend to express their own perspectives and gen-
erate poor quality dialogue data under the existing
iterative update paradigm due to distribution shift;
detailed examples are illustrated in Appendix B.
ONCE improves their dialogue policies by concur-
rent joint update, which uses the same batch of
data generated by the interaction between US and
DS every epoch to concurrently optimize dialogue
policy.

We apply PPO2 (Schulman et al., 2017) in our
online RL framework, which has the advantage of
trust region policy optimization (TRPO (Schulman
et al., 2015)), and it is easier to implement, more
generic, and empirically has better sample com-
plexity. The objective proposed is the following:

Lπ(θ
#) =Êt[

πθ#(at|st)
π
θ
#
old

(at|st)
Ât,

clip(
πθ#(at|st)
π
θ
#
old

(at|st)
, 1− ϵ, 1− ϵ)Ât)]

(4)

where # denote US or DS, θ is the parameter of
the policy network, st, at is the state and action
in the markov decision process (MDP), which are
token by token for GPT’s input and output of our
ONCE, the state is represented by the context of
previous dialogue turns, the action is the response
generated by the model each turn, and their space
is composed of the generated tokens in an orderly
manner, ϵ is a hyper-parameter, Ât is advantage
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function, the specific calculation formula can refer
to PPO2 (Schulman et al., 2017). In order to fully
exploit the performance of GPT-2 without generat-
ing redundant parameter models, we treat GPT-2
itself as the actor network for policy learning. To
approximate the value function, we connect a small
linear network to the hidden layers of GPT-2 as the
critic network, which is aimed at minimizing:

LV (ϕ#) = (Vϕ#(st)− V target
# )2 (5)

# denote US or DS, where Vϕ# is the value func-
tion, and ϕ is the parameter of the value network.
According to the visualization of data distribution
results in Sec. 6, co-evolutional joint update can
effectively ameliorate the compounding exposure
bias between US and DS, thus preventing policy
from falling into the sub-optimal range. Online
interaction evaluation in Sec. 5 also demonstrates
that it improves the sample efficiency compared to
iterative update.

4.2 Forward Filter

During the start stage of online fine-tuning, distri-
bution shift may result in severe bootstrap errors.
Updates in an unseen regime can lead to erroneous
policy evaluations and arbitrary policy updates may
ruin the initial learned policy. To ensure the purity
of our dialogue date in online buffer and contin-
ued training during the RL phase, a handcrafted
rule-based forward filter is applied to pick out fatal
dialogues that impact the optimization process: 1)
A large number of repetitions of meaningless words
appear in the sentence; 2) The key special token
representing the start or end of the sequence does
not appear; etc. Forward filter plays an important
component in our high-quality loop.

4.3 Backward Constraint

We also propose a penalty reward based on the
uncertainty of our learned transitions. Referring
to the penalty reward of uncertainty in MOPO (Yu
et al., 2020), r#

pen is related to the probability of the
generated output token in GPT-2:

r#
pen = λ(1−

∑
Num(prob > prob⋆)∑

Num
) (6)

λ and prob⋆ are two hyperparameters, prob⋆ is
the artificially set threshold, Num represents the
number of eligible tokens. In general, the backward
constraint is used for dealing with untrusted data.
We use the penalty reward mechanisms to guide

policy learning and ensure that the data it produces
does not end up in untrusted regions. Experimental
results in Table 4 indicate that backward constraints
are important to state-of-the-art performance.

Intuitively, with the co-evolutional update,
greater dialogue success rates can be achieved
while improving sample efficiency. As a result,
co-evolutional update forms high-quality cycles for
policy learning and data collection.

4.4 Reward Assignment
Reinforcement learning methods help to solve the
inconsistency between train/test measurements in
pretrained language models. However, it becomes
difficult for policy learning when RL algorithms
take place in an environment where rewards are
sparse, so we explore the hierarchical dense reward
with different levels of granularity and divide the
reward into different levels:

Task Reward Rtask: the success of the online
dialogue is used as the Task Reward Rtask, which
can only be observed at the end of the conversa-
tion, and are shared for US and DS. Rtask serves as
the most important motivational signal to facilitate
policy learning and performance improvement.

Domain Reward Rd: the success for a domain
is defined as Domain Reward Rd, which is also
shared for US and DS. In the dialogue of multiple
domains, Rd assists in smoothing the process of
policy learning at the node of domain conversion.

Turn Reward R#
turn: is designed separately for

US and DS, and it can be observed at every turn.
1) US Turn Reward RUS

turn concludes: it pro-
vides a new inform about the slot; it asks about
a new attribute about an entity; and it correctly
replies to the request from the DS side.

2) DS Turn Reward RDS
turn involves: it re-

quests a new slot; it successfully provides the en-
tity; and it correctly answers all attributes from the
US side.

The experimental results show that all the dif-
ferent types of rewards plays an essential role in
performance improvement. In summary, the com-
position of our global reward R# is as follows:

R# = Rtask +Rd +R#
turn + r#

pen (7)

5 Experiments

Dataset. We perform all experiments using Mul-
tiWOZ2.1 (Eric et al., 2020), which is currently
still widely being used in TOD, and the results pub-
lished on the official leaderboard are all using Mul-
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Model Pretrained Model RL-based Inform Rate Success Rate BLEU Combined Score

SimpleTOD (Hosseini-Asl et al., 2020) DistilGPT2 w/o 84.4 70.1 15.0 92.3
AuGPT (Kulhánek et al., 2021) variantGPT-2 w/o 76.6 60.5 16.8 85.4
SOLOIST (Peng et al., 2020) GPT-2 w/o 82.3 72.4 13.6 90.9
UBAR (Yang et al., 2021) DistilGPT2 w/o 83.4 70.3 17.6 94.4
PPTOD (Su et al., 2022) T5models w/o 83.1 72.7 18.2 96.1
BORT (Sun et al., 2022) T5-small w/o 85.5 77.4 17.9 99.4
MTTOD (Lee, 2021) T5-base w/o 85.9 76.5 19.0 100.2
GALAXY (He et al., 2021) UniLM w/o 85.4 75.7 19.64 100.2
MTTOD (Lee, 2021) T5-base w/o 85.9 76.5 19.0 100.2
JOUST (Tseng et al., 2021) LSTM w 83.2 73.5 17.6 96.0
SGA-JRUD (Liu et al., 2022) DistilGPT-2 w 85.0 74.0 19.11 98.61

ONCE-DS(Ours) DistilGPT2 w 87.5 79.0 18.25 101.5

Table 1: Empirical comparison of End-to-End TOD systems models in the official leaderboard. ONCE achieve the
state-of-the-art results of Success, Inform and the Combined Score.

tiWOZ2.0/2.1. It is a large-scale multi-domain Wiz-
ard of Oz dataset for TOD. There are 3406 single-
domain conversations that include booking if the
domain allows for that and 7032 multi-domain con-
versations consisting of at least 2 to 5 domains.
Each dialogue consists of a goal, multiple user ut-
terances, and system responses. Also, each turn
contains a belief state and a set of dialogue actions
with slots for each turn. TOD system is usually
defined by an ontology, which defines all entity
properties called slots and all possible slot values.
Details can be found in the appendix E. The user’s
understanding works as a reception of DS’s output
messages, and it’s not available in MultiWOZ, we
use dst.tar.gz according to JOUST, which is open
sourced.

Evaluation Metrics. Three automatic metrics
are included to ensure better interpretation of the
results. Among them, the first two metrics eval-
uate the completion of dialogue tasks: whether
the system has provided an appropriate entity (In-
form rate) and then answered all the requested at-
tributes (Success rate); while fluency is measured
via BLEU score (Papineni et al., 2002). Following
(Mehri et al., 2019) ,the Combined Score perfor-
mance (Combined) is also reported, calculated as
(0.5*(Inform + Success) + BLEU). The overall goal
in TOD domain is getting a strong DS, which is
achieved by fair Offline evaluation compared to
other methods(such as JOUST, SGA-JRUD etc. on
the leaderboard). Online evaluation is used to mea-
sure the respective method’s performance in the
joint update process.

Training Procedure. First, we train US and DS
with offline supervision on the MultiWOZ2.1 (Eric
et al., 2020) dataset, defined as SL-US and SL-DS.
We implement our framework with HuggingFace’s

Transformers (Wolf et al., 2019) of DistilGPT2
(Sanh et al., 2019), a distilled version of GPT-2.
Then we collect online interactive data through
the communication between SL-US and SL-DS
for later RL experiments with the objective Eq. 4
and Eq. 5, and the constructed goal is sampled
from the train or dev dataset. Thus we get two co-
evolutional update models defined as ONCE-US
and ONCE-DS. More details about the experiments
and hyper-parameters can be found in Appendix A.

Offline Benchmark Evaluation. We first
show the offline benchmark results of different
supervised-trained DS in an end-to-end manner
in Table 1. All the contents we use are ground
truth from the US side; it mainly evaluates the
ability of DS. The scripts 2 we strictly followed
are released by Paweł Budzianowski from Cam-
bridge Dialogue Systems Group (Budzianowski
et al., 2018a; Ramadan et al., 2018; Eric et al., 2020;
Zang et al., 2020). Those end-to-end pretrained
model-based methods use the dialogue history as
input to generate the belief states, actions, and re-
sponses simultaneously. Regardless of the type of
pretrained model and whether the RL methods are
used, ONCE achieves state-of-the-art results: suc-
cess rate of 79.0, inform rate of 87.5, and combined
score of 101.5 points.

Online Interactive Evaluation. In order to ver-
ify the effectiveness of our online RL optimization,
we let US and DS interact with each other. In this
process, the US can only receive the information
from the goal and system response, and DS feeds
back the entities through the database according
to user utterance; there is no ground truth in the

2The evaluation code is released at https://github.com/
budzianowski/multiwoz.
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Diversity SL-US ONCE-US SL-DS ONCE-DS
distinct-1(‰)↑ 5.961 6.249 4.872 5.125
distinct-2(‰)↑ 31.848 32.098 26.549 27.617

Self-BLEU(%)↓ 24.722 21.025 27.008 22.161

Table 2: Results of diversity matrix distinct.

process of online interactive dialogues. In addition
to DS, this evaluation also indicates the capabilities
of the US. Note that we do not show the BLEU
score since there is no reference available in online
interactions. Some existing methods are not com-
pared here because of the inconsistent evaluation
methods (the reason why SGA-JRUD has better
performance under online evaluation is that they
used different and uncommonly used evaluation
scripts (Shi et al., 2019)). The experimental results
are shown in Table 4 and Fig. 3.

Under the same test method, the success rate
of ONCE is significantly better than JOUST
(Tseng et al., 2021), which verifies that our ONCE
achieves the purpose of an efficient loop of data
collection and policy learning. During the stage
of co-evolutional joint update, the bias of US is
passed to the DST of DS, resulting in a decrease
of inform rate, while JOUST adopts an iterative
update method, MADPL is not an end-to-end ap-
proach, SGA-JRUD uses different scripts between
online and offline evaluation. Table 2 shows the
results of distinct-k, which measures the degree
of diversity by calculating the number of distinct
uni-grams and bi-grams in generated responses. It
can be seen that the text generated with our RL
optimization is of higher diversity, and A lower
Self-BLEU (Zhu et al., 2018) score also implies
more diversity of the document.

Human Evaluation. Human evaluation of di-
alogue quality is performed on the Amazon Me-
chanical Turk platform to confirm the improvement
of our proposed method ONCE. It is to verify that
method has improved from SL to RL. We randomly
sample 100 dialogues by US and DS, and each dia-
logue is evaluated by five turkers. Four evaluation
indicators involve: 1) Success: Which interactive
dialogue completes the goal of the task more suc-
cessfully? 2) US Humanoid: Which US behaves
more like a real human user and whether the US ex-
presses the constraints completely in an organized
way? 3) DS Quality: Which DS behaves more
intelligently and provides US with the required in-
formation? 4) Fluency: Which dialogue is more
natural, fluent, and efficient?

The results of the human evaluation shown in

Percentage(%) SL-US + SL-DS ONCE-US + ONCE-DS
Success 36.0 64.0

US Humanoid 40.0 60.0
DS Quality 43.0 57.0

Fluency 38.0 62.0

Table 3: Results of human evaluation.

Table 3 are consistent with the results of the online
evaluation. DS is more efficient at completing dia-
logues with our proposed online RL optimization.
Furthermore, joint optimization of US can produce
behavior more closely resembling that of a human.
Improvements under two agents produce a more
natural and efficient dialogue flow.

6 Ablation Study

Hierarchical Dense Rewards. A major challenge
of putting RL into practice is the sparsity of reward
feedback (Rengarajan et al., 2022). As described in
Sec. 4.1, we specially design fine-grained dialogue
turn reward R#

turn, domain reward Rd and overall
task reward Rtask according to the characteristics
of US and DS in TOD. The evaluation results are
shown in the second row of Table 4. In Fig. 3(a),
we plot the online interaction success rate curve,
which is based on different reward settings during
online RL optimization.

As we can see from the result, the three types of
designed dense rewards all have final positive ef-
fects on the success of the task. It is worth noticing
that Rtask plays a major role. The success rate will
dramatically drop if there is no Rtask. Rd and R#

turn
both improve the performance of online and offline
evaluation, which indicates the importance of our
dense reward for realizing optimal performance.

Choice of RL Policy Scheme. In RL, the pol-
icy represents a probabilistic mapping from states
to actions. ONCE’s framework contains not only
reinforced end-to-end DS, but also reinforced the
end-to-end US, and their policies include executing
action At, understanding context Ut, and generat-
ing natural language Gt.

We conduct three experiments and their RL poli-
cies are Ut⊕At⊕Gt, Ut⊕At and At respectively.
Based on different policy schemes during online
RL optimization, the success rate curves are shown
in Fig. 3(b). The best performance results are ob-
tained when only the dialogue policy is optimized,
while adding the optimization of the component of
understanding and generation does not enhance the
success rate. It can be seen from Table 4 that using
At for policy achieves the highest online evaluation
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Figure 3: Comparative analysis of different combinations of rewards settings, policy schemes and update patterns.

Model Online Evaluation Offline Evaluation

Inform Success Inform Success BLEU Combined

JOUST (Tseng et al., 2021) 84.6 73.0 83.2 73.5 17.6 96.0

ONCE-w/o Rtask 79.9 75.1 82 74.9 18.23 96.68
ONCE-w/o Rd 82.4 76.7 86.6 77.4 17.55 99.55
ONCE-w/o R

#
turn 83.2 79.8 86.5 77.2 17.64 99.49

ONCE-[POL = Ut ⊕ At ⊕ Gt] 77.5 72.3 83.9 76.5 16.67 98.87
ONCE-[POL = Ut ⊕ At] 80 75.4 84.6 76.5 18.71 99.26

ONCE-[SL-US + SL-DS] 75.7 70.5 70.5 69.8 18.1 91.95
ONCE-[ONCE-US + SL-DS] 78.8 73.4 70.5 69.8 18.1 91.95
ONCE-[SL-US + ONCE-DS] 81.7 78.2 85.2 77.4 17.98 99.28
ONCE-[Iterative Update] 82 78.6 85.9 77.2 17.51 99.06

ONCE-w/o Rpen 84 80.6 85.5 78 17.8 99.55

ONCE [ONCE-US + ONCE-DS]
[POL = At], w Rpen

w Rtask Rd R
#
turn (Ours)

84.6 82.6 87.5 79.0 18.25 101.5

Table 4: Empirical comparison of interaction quality of
generated dialogues using the 1k test corpus user goals.

results with large margins. In offline evaluation, us-
ing At also achieves the best results. The reason is
that the quality of the policy directly influences the
quality of the dialogue, and the generation module
generally has an excellent performance in SL. In
the case of three modules being optimized simul-
taneously, the training of the online RL process
becomes more trembling and the guidance of re-
ward becomes oblique and falls into sub-optimal.

Validity of Co-Evolutional joint update. The
third row of Table 4 demonstrates the effective-
ness of co-evolutional update. When we use RL
to optimize only US or DS, the performance drops
significantly compared with the co-evolutional up-
date. In particular, when we only update the US,
the performance improvement is even smaller. We
also compare the performance between iterative up-
date and co-evolutional joint update in our ONCE
framework, iterative update is lower than ONCE
but comparable to SGA-JRUD, especially the suc-
cess rate and inform rate, which shows that co-
evolutional update is efficient and better. The main
reason is that the co-evolutional update helps US

and DS coordinate with each other and effectively
solve the problem of distribution shift. As shown in
Fig. 3(c), the online interaction success rate curve
based on different reinforced agents during online
RL optimization also verifies the conclusion. The
iterative update result of ONCE method is shown
in Table 4, which is lower than ONCE but com-
parable to SGA-JRUD, especially the success rate
and inform rate, which shows that co-evolutional
update is better.

The forward filter helps continued training in the
online process. The fourth row of Table 4 demon-
strates the effectiveness of our backward constraint.
Concretely, the penalty reward help ONCE maxi-
mizes a lower bound of the return in the true MDP,
careful use of the model in regions outside of the
data support, and find the optimal trade-off between
the return and the risk (Yu et al., 2020). The for-
ward filter is to filter out poor quality data and en-
sure the stability of the training in the initial stage.
Removing the forward filter will cause severe pol-
icy deterioration leading to learning failure.

Visualization of Data Distribution. Follow-
ing the work of Budzianowski et al. (2018b), as
shown in Fig. 4, we calculate and plot the lengths
of user act and system act, as well as the dialogue
turn length. We compare the results of the orig-
inal Dataset, supervised learning (SL-US + SL-
DS), iterative update, and ONCE (final optimal
ONCE-US + ONCE-DS). The visualization shown
in Fig. 4 and KL divergence in Table 5 can help us
clearly see the exposure bias problem from offline
to online. Also, it can be seen that our method can
make up for those invisible data parts in the pre-
trained model and help the learning of strategies.
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Figure 4: The length of user act and system act, as well as the dialogue turn length.

KL divergence(%) User Act System Act Dialogue
Offline SL 17.48 2.08 11.46

Iterative Update 17.0 2.23 8.76
ONCE 4.27 0.58 1.95

Table 5: Comparison of KL divergence results on user
act, system act, and dialogue turn length between gener-
ation after different methods and MultiWOZ2.1 dataset.

7 Conclusion and Discussion

Our contribution is that we propose a bias-aware
concurrent joint update framework compared to
existing RL-based TOD systems, forward filter and
backward constraint are modules that make the on-
line RL process more stable and improve the final
performance. Compared with the iterative update,
concurrent joint update greatly reduces the propor-
tion of manual operations, and optimizes it as an
automated process, when terminating the optimiza-
tion of US or DS is not easy and difficult to balance
in iterative update. It performs offline SL on dataset
to learn GPT-2-based end-to-end US and DS, both
of which possess features of natural language un-
derstanding, dialogue policy management, and nat-
ural language generation. Then co-evolutional up-
date of their dialogue policies through online RL
with the help of forward filter and backward con-
straint, which takes a step further towards address-
ing the problem of non-stationarity and distribution
shift caused by compounding exposure bias, and
greatly improves the sampling efficiency. Finally,
we achieved the current state-of-the-art results.

As for future work, ONCE will be applied to
more complex dialogues tasks and other scenarios.
Although ONCE currently achieves state-of-the-art
results, its performance may still be limited by the
pretrained language model and online reinforce-
ment learning algorithms, so it will be interesting
to explore stronger neural network models or ro-
bust RL algorithms. Last but not least, another

research direction is to create the US with a variety
of personalities to support DS policy learning.

Limitations

Throughout the perspective of distributional visual-
izations, the problem of distribution shift caused by
compounding exposure bias and non-stationarity
still persists. However, we have made claims about
our desire to take a step further to address it, which
can be proved from our experimental results and
the gap of distribution between ours and the origi-
nal dataset is shrunk. Thus we can focus on more
effective methods in the future and provide a theo-
retical basis for solving this problem.

Meanwhile, due to a large amount of param-
eters of the GPT model, it is difficult and time-
consuming to train the two GPT-based US and DS
in the online RL process. At the same time, ac-
cording to the conclusion of optimizing the GPT
with different granularity of policy schemes. In
future work, we can consider optimizing only parts
of parameters of GPT itself to achieve better perfor-
mance and improve the efficiency of RL algorithms
and computing resources.

Ethics Statement

Our method and implementation are based on
the existing public dataset MultiWOZ (Eric et al.,
2020), without any personal identity and subjec-
tive feelings. While our approach has no negative
effects on society, we also hope to contribute to
the development of task-oriented dialogue. At the
same time, we also pay attractive salaries to the
turkers of Amazon Mechanical Turk; in addition to
thanking them for their assistance in human evalu-
ation, we also want to encourage more scholars to
participate and offer part-time job opportunities.
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A Training Details

We implement US and DS models with Hugging-
face Transformers repository of version 4.2.2. We
initialize it with DistilGPT-2, a distilled version
of GPT-2. During offline supervised learning, the
minibatch base size is set to be 2 with gradient ac-
cumulation steps of 16, we use AdamW optimizer
and a linear scheduler with 20 warm up steps and
maximum learning rate 1× 10−4, and the gradient
clip is set to be 5. The total epochs are 30 (it takes
about 20 hours on NVIDIA Tesla 2V100-SXM2-
32GB) and we select the best model on the test
set.

In the stage of online RL, we connect three lin-
ear layers ( 768*512 → ReLU → 512*512 →
ReLU→512*1 ) as our value network. The learning
rate of policy and value are 1× 10−6 and 5× 10−6

respectively. The batch size for RL optimization is
4, and the hyper-parameters is PPO2: γ is 0.99, ϵ is
0.1 and τ is 0.95. Two important hyper-parameters
in policy constraint λ we set to be 0.75 and the
probability threshold is 0.9. The replay buffer size
of our algorithm is 200. The whole RL optimized
epoch is 20 (it takes about 4 hours on a single
NVIDIA Tesla V100-SXM2-32GB), we will evalu-
ate the online interaction quality after every epoch
(about 1 hour) and choose the excellent model for
offline evaluation (about 40 min).

The reward setting of our framework: Task Re-
ward Rtask, Domain Reward Rd and Turn Reward
R#

turn are listed in Table 6:

Reward Type Success Failure
Rtask 20 -10
Rd 5 -5
User R#

turn 0 0 0 -1 -1 -1
System R#

turn 0 0 0 -2.5 -1 -2.5

Table 6: Reward setting of our online RL experiment.

B Examples of Bad Case

After offline supervised learning to obtain US and
DS with dialogue ability, when we let them interact
online, we will find that there are some problems
in the dialogue, we regard it as low-quality data, of
which the first type is to generate too much Tokens
that are too long or redundantly repeated, and the
second category is a token that does not generate
the key to indicate the start or end of the sequence.
These two types of data are shown in the Table 8:

C Examples of Improvement from RL

In order to demonstrate the effectiveness of the
RL method, we show in Table 7 the DS obtained
based on supervised learning and the DS after RL
optimization with different feed backs for the input
of the same goal and US. We enumerate the original
failed dialogues and the successful dialogues after
policy optimization.

MUL0072.json

Utter
yes, i also need a hotel room with free wifi also
in [hotel_area], [hotel_stars] star, and
[hotel_pricerange] please.

Act
act_inform hotel_name
act_offerbook hotel_none

Resp
the [hotel_name] meets your requirement -s.
would you like me to book this for you?

ActSL act_inform hotel_choice act_request hotel_area

RespSL

there are [value_count] hotel -s that meet your
criteria. is there a certain area you would like to
stay in?

ActRL

act_inform hotel_choice hotel_internet
hotel_name hotel_name hotel_name
hotel_pricerange hotel_stars hotel_type
act_offerbook hotel_none

RespRL

there are [value_count] hotel -s that meet your
criteria [hotel_name], [hotel_name],
[hotel_name], [hotel_name],
and [hotel_name]. would you like to
book [value_count] of these?

MUL0116.json

Utter
yes, i am looking for a
[restaurant_pricerange] -ly priced restaurant
with [restaurant_food] food.

Act
act_offerbook restaurant_none act_recommend
restaurant_name

Resp
i can recommend [restaurant_name]. would
you like to book a table with them?

ActSL

act_inform restaurant_area restaurant_choice
restaurant_food restaurant_pricerange
act_request restaurant_food

RespSL

i have [value_count]
[restaurant_pricerange] [restaurant_food]
restaurant -s in the [restaurant_area].
do you have a preferred area of town?

ActRL
act_inform restaurant_name act_offerbook
restaurant_none

RespRL
[restaurant_name] fits your criteria. would
you like me to book a table for you?

Table 7: Example of RL improvement.

D Examples of Diversity

Through the observation of online interactive di-
alogue, we can find that RL helps our model has
the ability to generate richer dialog action. At the
same time, our natural language generation is also
richer and more diverse. We enumerate examples
of which are shown in the Table 9, which also
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Bad Type Examples

Redundant
sequence

• < sos_sa > [act_inform] [attraction_type] [attraction_type] [attraction_type] [act_request]
[attraction_type] < eos_sa > < sos_sr > what type of attraction are you looking for? in the south, we have
[attraction_type], [attraction_type], [attraction_type],[attraction_type],[attraction_type],
,[attraction_type] [attraction_type],[attraction_type],[attraction_type], [attraction_type],
[attraction_type],[attraction_type],[attraction_type],and [attraction_type]. [attraction_type],
if you tell me what you are looking for, we can narrow it
• <sos_sa> [act_inform] [hotel_area] [hotel_area] [hotel_area] [hotel_choice] [hotel_choice]
[hotel_choice] [hotel_choice] [hotel_choice] [hotel_choice] [hotel_stars] [hotel_stars] [hotel_stars]
[hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars]
[hotel_stars][hotel_stars] [hotel_stars] [hotel_stars] [hotel_stars]
[hotel_stars][hotel_stars] [hotel_stars] [hotel_stars]

No
key

special
token

• < sos_ua > [act_inform] [hotel_area] [hotel_stars] star hotel -s in the [hotel_area]. <eos_uu>
• < sos_ua > [act_inform] [hotel_area] [hotel_stars] star hotel -s in the [hotel_area]. <eos_uu>
• < sos_ua > with free parking and wifi? <eos_uu>
• < sos_ua > [act_inform] [attraction_address] [attraction_area] [attraction_fee] [value_price]
pounds to enter. <eos_sr>

Table 8: Low quality data in our online generation.

SNG01290.json

UtterGT i am interesting in info about [hotel_stars] star hotel -s and such that offer free wifi.

RespGT
i have [value_count] hotel -s that match the description of [hotel_stars] star rating -s. are you looking for a hotel
in the centre or south area?

Utter1 i am looking for a [hotel_pricerange] hotel with free wifi.
Resp1 i have [value_count] [hotel_pricerange] hotel -s with free wifi. is there a specific area you would like to stay in?
Utter2 i am looking for a [hotel_pricerange] place to stay with free wifi.
Resp2 i have [value_count] [hotel_pricerange] hotel -s with free wifi. is there a particular area you would like to stay in?

UtterGT the location does not matter so long as it has free wifi
RespGT [hotel_name] is supposed to be great and it offers free wifi. would you like me to book you a room?
Utter1 i would like to stay in the centre of town, and i am open to place -s that have a [hotel_stars] star rating.
Resp1 [hotel_name] meets your criteria. would you like to book a room?
Utter2 i would like to stay in a hotel with a [hotel_stars] star rating please.
Resp2 i have [value_count] options for you to choose from. do you prefer a certain area of town?

UtterGT book it for [hotel_people] people and [hotel_stay] nights starting from [hotel_day].
RespGT sorry, it looks like the hotel cannot accommodate you for that amount of time.
Utter1 yes, please. i need it for [hotel_stay] nights starting on [hotel_day]. there will be [hotel_people] people.
Resp1 booking was successful. reference number is [hotel_reference]. is there anything else i can help you with?
Utter2 no, i do not have a preference. i just need to book it for [value_count] people staying for [value_count] nights.

Resp2
i have booked you at the [hotel_name]. your reference number is [hotel_reference]. is there anything else
i can help you with?

UtterGT perhaps starting [hotel_day] instead?
RespGT great, your reference number is [hotel_reference]. is there anything else i can help with?
Utter1 no, that s all i need. thank you for your help.
Resp1 thank you for using our system!
Utter2 no, that s all i need. thank you!
Resp2 thank you for using our service. goodbye.!

UtterGT no that s it all. thanks for your help.
RespGT wonderful. glad to help.
Utter1
Resp1
Utter2
Resp2

Table 9: Example of diversity.

explains why the BLEU value drops in our experi-
ments.

E Ontology

The ontology defines all entity properties called
slots and all possible values for each slot, which

concludes goal slot, act slot and belief state slot,
special token conclude the start and end token of
sentences or actions, database query result and
padding token. Special tokens and ontology are
illustrated as shown in Table 10.
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Type Representations

Goal
Slot

Tokens

’restaurant_info_area’, ’restaurant_info_food’, ’restaurant_info_name’,
’restaurant_info_pricerange’,’restaurant_book_day’, ’restaurant_book_people’,
’restaurant_book_time’, ’restaurant_reqt_address’, ’restaurant_reqt_area’,
’restaurant_reqt_food’, ’restaurant_reqt_phone’, ’restaurantreqtpostcode’,
’restaurant_reqt_pricerange’,
’hotel_info_area’, ’hotel_info_internet’, ’hotel_info_name’,
’hotel_info_parking’, ’hotel_info_pricerange’, ’hotel_info_stars’, ’hotel_info_type’,
’hotel_book_day’, ’hotel_book_people’, ’hotel_reqt_type’, ’hotel_book_stay’,
’hotel_reqt_address’, ’hotel_reqt_area’, ’hotel_reqt_internet’, ’hotel_reqt_parking’,
’hotel_reqt_phone’, ’hotel_reqt_postcode’, ’hotel_reqt_pricerange’, ’hotel_reqt_stars’,
’attraction_info_area’, ’attraction_info_name’, ’attraction_info_type’, ’attraction_reqt_address’,
’attraction_reqt_area’, ’attraction_reqt_fee’, ’attraction_reqt_phone’, ’attraction_reqt_postcode′,
’attraction_reqt_type’,
’train_info_arriveBy’, ’train_info_day’, ’train_info_departure’,
’train_info_destination’, ’train_info_leaveAt’, ’train_book_people’, ’train_reqt_arriveBy’,
’train_reqt_duration’, ’train_reqt_leaveAt’, ’train_reqt_price’, ’train_reqt_trainID’,
’taxi_info_arriveBy’, ’taxi_info_departure’, ’taxi_info_destination’,
’taxi_info_leaveAt’, ’taxi_reqt_type’, ’taxi_reqt_phone’,
’police_reqt_address’,’police_reqt_phone’, ’police_reqt_postcode’,
’hospital_info_department’, ’hospital_reqt_address’, ’hospital_reqt_phone’,’hospital_reqt_postcode’,

Special
Tokens

’<pad>’, ’<unk>’, ’<eos_g>’, ’<eos_ua>’, ’<eos_uu>’, ’<eos_b>’, ’<eos_d>’, ’<eos_sa>’, ’<eos_sr>’,
’<sos_g>’, ’<sos_ua>’,’<sos_uu>’, ’<sos_b>’, ’<eos_d>’, ’<sos_sa>’, ’<sos_sr>’, ’<sos_db>’, ’<eos_db>’,
’restaurant_db_0’, ’restaurant_db_1’,’restaurant_db_2’, ’hotel_db_0’, ’hotel_db_1’, ’hotel_db_2’,
’attraction_db_0’, ’attraction_db_1’, ’attraction_db_2’, ’train_db_0’, ’train_db_1’, ’train_db_2’

Action
Slot

Tokens

[’act_inform’, ’general_none’, ’act_request’, ’act_reqmore’, ’restaurant_food’, ’act_thank’,
’act_offerbook’, ’train_leaveAt’, ’restaurant_name’, ’restaurant_area’, ’restaurant_pricerange’,
’hotel_area’, ’act_offerbooked’, ’hotel_name’, ’train_destination’, ’hotel_type’, ’train_departure’,
’hotel_pricerange’, ’attraction_type’, ’train_arriveBy’, ’train_day’, ’attraction_area’, ’act_bye’,
’attraction_name’, ’hotel_stars’, ’act_welcome’, ’hotel_stay’,’restaurant_none’, ’act_recommend’,
’attraction_address’, ’hotel_none’, ’train_trainID’, ’restaurant_time’, ’hotel_parking’,
’hotel_internet’, ’hotel_day’, ’train_none’, ’train_price’, ’attraction_fee’, ’restaurant_day’,
’restaurant_address’, ’restaurant_choice’, ’attraction_phone’,’hotel_people’, ’train_people’,
’attraction_postcode’, ’restaurant_people’, ’restaurant_reference’, ’act_nooffer’, ’hotel_reference’,
’train_reference’, ’act_select’, ’restaurant_phone’, ’taxi_type’, ’attraction_choice’, ’act_greet’,
’train_choice’, ’restaurant_postcode’, ’taxi_phone’, ’taxi_departure’, ’taxi_leaveAt’, ’hotel_address’,
’train_duration’, ’taxi_destination’, ’act_nobook’, ’booking_none’, ’hotel_phone’, ’hotel_postcode’,
’taxi_arriveBy’, ’taxi_none’, ’booking_day’, ’attraction_none’, ’booking_time’, ’booking_people’,
’hospital_postcode’, ’hospital_phone’,’hospital_address’, ’police_address’, ’police_postcode’,
’police_phone’,’hospital_department’, ’hospital_none’, ’police_name’, ’attraction_pricerange’,
’booking_stay’, ’police_none’, ’train_leaveat’, ’booking_reference’, ’train_arriveby’, ’booking_name’,
’taxi_leaveat’,’hotel_time’, ’attraction_open’, ’restaurant_stay’, ’taxi_arriveby’,’hotel_choice’]

Table 10: Speicial tokens and ontology defined in our experiment.
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