@inproceedings{ekstedt-skantze-2022-much,
title = "How Much Does Prosody Help Turn-taking? Investigations using Voice Activity Projection Models",
author = "Ekstedt, Erik and
Skantze, Gabriel",
editor = "Lemon, Oliver and
Hakkani-Tur, Dilek and
Li, Junyi Jessy and
Ashrafzadeh, Arash and
Garcia, Daniel Hern{\'a}ndez and
Alikhani, Malihe and
Vandyke, David and
Du{\v{s}}ek, Ond{\v{r}}ej",
booktitle = "Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = sep,
year = "2022",
address = "Edinburgh, UK",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigdial-1.51",
doi = "10.18653/v1/2022.sigdial-1.51",
pages = "541--551",
abstract = "Turn-taking is a fundamental aspect of human communication and can be described as the ability to take turns, project upcoming turn shifts, and supply backchannels at appropriate locations throughout a conversation. In this work, we investigate the role of prosody in turn-taking using the recently proposed Voice Activity Projection model, which incrementally models the upcoming speech activity of the interlocutors in a self-supervised manner, without relying on explicit annotation of turn-taking events, or the explicit modeling of prosodic features. Through manipulation of the speech signal, we investigate how these models implicitly utilize prosodic information. We show that these systems learn to utilize various prosodic aspects of speech both on aggregate quantitative metrics of long-form conversations and on single utterances specifically designed to depend on prosody.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ekstedt-skantze-2022-much">
<titleInfo>
<title>How Much Does Prosody Help Turn-taking? Investigations using Voice Activity Projection Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Ekstedt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Skantze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oliver</namePart>
<namePart type="family">Lemon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dilek</namePart>
<namePart type="family">Hakkani-Tur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arash</namePart>
<namePart type="family">Ashrafzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="given">Hernández</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Malihe</namePart>
<namePart type="family">Alikhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vandyke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Dušek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Edinburgh, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Turn-taking is a fundamental aspect of human communication and can be described as the ability to take turns, project upcoming turn shifts, and supply backchannels at appropriate locations throughout a conversation. In this work, we investigate the role of prosody in turn-taking using the recently proposed Voice Activity Projection model, which incrementally models the upcoming speech activity of the interlocutors in a self-supervised manner, without relying on explicit annotation of turn-taking events, or the explicit modeling of prosodic features. Through manipulation of the speech signal, we investigate how these models implicitly utilize prosodic information. We show that these systems learn to utilize various prosodic aspects of speech both on aggregate quantitative metrics of long-form conversations and on single utterances specifically designed to depend on prosody.</abstract>
<identifier type="citekey">ekstedt-skantze-2022-much</identifier>
<identifier type="doi">10.18653/v1/2022.sigdial-1.51</identifier>
<location>
<url>https://aclanthology.org/2022.sigdial-1.51</url>
</location>
<part>
<date>2022-09</date>
<extent unit="page">
<start>541</start>
<end>551</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Much Does Prosody Help Turn-taking? Investigations using Voice Activity Projection Models
%A Ekstedt, Erik
%A Skantze, Gabriel
%Y Lemon, Oliver
%Y Hakkani-Tur, Dilek
%Y Li, Junyi Jessy
%Y Ashrafzadeh, Arash
%Y Garcia, Daniel Hernández
%Y Alikhani, Malihe
%Y Vandyke, David
%Y Dušek, Ondřej
%S Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2022
%8 September
%I Association for Computational Linguistics
%C Edinburgh, UK
%F ekstedt-skantze-2022-much
%X Turn-taking is a fundamental aspect of human communication and can be described as the ability to take turns, project upcoming turn shifts, and supply backchannels at appropriate locations throughout a conversation. In this work, we investigate the role of prosody in turn-taking using the recently proposed Voice Activity Projection model, which incrementally models the upcoming speech activity of the interlocutors in a self-supervised manner, without relying on explicit annotation of turn-taking events, or the explicit modeling of prosodic features. Through manipulation of the speech signal, we investigate how these models implicitly utilize prosodic information. We show that these systems learn to utilize various prosodic aspects of speech both on aggregate quantitative metrics of long-form conversations and on single utterances specifically designed to depend on prosody.
%R 10.18653/v1/2022.sigdial-1.51
%U https://aclanthology.org/2022.sigdial-1.51
%U https://doi.org/10.18653/v1/2022.sigdial-1.51
%P 541-551
Markdown (Informal)
[How Much Does Prosody Help Turn-taking? Investigations using Voice Activity Projection Models](https://aclanthology.org/2022.sigdial-1.51) (Ekstedt & Skantze, SIGDIAL 2022)
ACL