19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

Proceedings of the Workshop

July 14, 2022
Organizing Committee

Co-Chair

Garrett Nicolai, University of British Columbia
Eleanor Chodroff, University of York

SIGMORPHON Officers

President: Garrett Nicolai, University of British Columbia
Secretary: Miikka Silfverberg, University of British Columbia
At Large: Eleanor Chodroff, University of York
At Large: Sandra Kübler, Indiana University
At Large: Çağrı Çöltekin, University of Tübingen
Program Committee

Reviewers

Khuyagbaatar Batsuren, National University of Mongolia
Canaan Breiss, MIT
Jane Chandlee, Haverford College
Çağrı Çöltekin, University of Tübingen
Daniel Dakota, Indiana University
Aniello De Santo, University of Utah
Ewan Dunbar, University of Toronto
Indranil Dutta, Jadavpur University
Micha Jacobs, University of Buffalo
Adam Jardine, Rutgers University
Greg Kobele, Universität Leipzig
Jordan Kodner, Stony Brook University
Sandra Kübler, Indiana University
Andrew Malouf, San Diego State University
Arya McCarthy, Johns Hopkins University
Kemal Oflazer, CMU Qatar
Gerald Penn, University of Toronto
Jelena Prokic, Universiteit Leiden
Jonathan Rawski, San Diego State University
Brian Roark, Google AI
Morgan Sonderegger, McGill University
Miikka Silfverberg, University of British Columbia
Kairit Sirts, University of Tarfu
Ekaterina Vylomova, University of Melbourne
Adam Wiemerslage, University of Colorado, Boulder
Adina Williams, Facebook AI Research
Colin Wilson, Johns Hopkins University
Anssi Yli-Jyrä, University of Helsinki
Changbing Yang, University of British Columbia
Keynote Talk: Parsing continuous speech into lexically bound phonetic sequences
Laura Gwilliams
University of California, San Francisco

Abstract: Speech consists of a continuously-varying acoustic signal. Yet human listeners experience it as sequences of discrete speech sounds, which are used to recognise words. To examine how the human brain appropriately sequences the speech signal, we recorded two-hour magnetoencephalograms from 21 subjects listening to short narratives. Our analyses show that the brain continuously encodes the three most recently heard speech sounds in parallel, and maintains this information long past the sensory input. Each speech sound has a representation that evolves over time, jointly encoding both its phonetic features and time elapsed since onset. This allows the brain to represent the relative order and phonetic content of the phonetic sequence. These dynamic representations are active earlier when phonemes are more predictable, and are sustained longer when lexical identity is uncertain. The flexibility in the dynamics of these representations paves the way for further understanding of how such sequences may be used to interface with higher order structure such as morphemes and words.

Bio: Laura Gwilliams received her PhD in Psychology with a focus in Cognitive Neuroscience from New York University in May 2020. Currently she is a post-doctoral researcher at UCSF, using MEG and ECoG data to understand how linguistic structures are parsed and composed while listening to continuous speech. The ultimate goal of Laura’s research is to describe speech comprehension in terms of what operations are applied to the acoustic signal; which representational formats are generated and manipulated (e.g. phonetic, syllabic, morphological), and under what processing architecture.
Keynote Talk: Deep Phonology: Modeling language from raw acoustic data in a fully unsupervised manner

Gasper Begus
University of California, Berkeley

Abstract: In this talk, I propose that language and its acquisition can be modeled from raw speech data in a fully unsupervised manner with Generative Adversarial Networks (GANs) and that such modeling has implications both for the understanding of language acquisition and for the understanding of how deep neural networks learn internal representations. I propose a technique that allows us to “wug-test” neural networks trained on raw speech, analyze intermediate convolutional layers, and test a causal relationship between meaningful units in the output and latent/intermediate representations. I further propose an extension of the GAN architecture in which learning of meaningful linguistic units emerges from a requirement that the networks output informative data and includes both the perception and production principles. With this model, we can test what the networks can and cannot learn, how their biases match human learning biases in behavioral experiments, how speech processing in the brain compares to intermediate representations in deep neural networks (by comparing acoustic properties in intermediate convolutional layers and the brainstem), how symbolic-like rule-like computation emerges in internal representations, and what GAN’s innovative outputs can teach us about productivity in human language. This talk also makes a more general case for probing deep neural networks with raw speech data, as dependencies in speech are often better understood than those in the visual domain and because behavioral data on speech (especially the production aspect) are relatively easily accessible.

Bio: Gašper Beguš an Assistant Professor at the Department of Linguistics at UC Berkeley where he directs the Berkeley Speech and Computation Lab. Before coming to Berkeley, he was an Assistant Professor at the University of Washington and before that he graduated with a Ph.D. from Harvard. His research focuses on developing deep learning models for speech data. More specifically, he trains models to learn representations of spoken words from raw audio inputs. He combines machine learning and statistical modeling with neuroimaging and behavioral experiments to better understand how neural networks learn internal representations in speech and how humans learn to speak.
Table of Contents

On Building Spoken Language Understanding Systems for Low Resourced Languages
 Akshat Gupta ... 1

Unsupervised morphological segmentation in a language with reduplication
 Simon Todd, Annie Huang, Jeremy Needle, Jennifer Hay and Jeanette King 12

Investigating phonological theories with crowd-sourced data: The Inventory Size Hypothesis in the light of Lingua Libre
 Mathilde Hutin and Marc Allassonnière-Tang .. 23

Logical Transductions for the Typology of Ditransitive Prosody
 Mai Ha Vu, Aniello De Santo and Hossep Dolatian .. 29

A Masked Segmental Language Model for Unsupervised Natural Language Segmentation
 C.M. Downey, Fei Xia, Gina-Anne Levow and Shane Steinert-Threlkeld 39

Trees probe deeper than strings: an argument from allomorphy
 Hosdep Dolatian, Shiori Ikawa and Thomas Graf .. 51

Subword-based Cross-lingual Transfer of Embeddings from Hindi to Marathi and Nepali
 Niyata Bafna and Zdeněk Žabokrtský ... 61

Multidimensional acoustic variation in vowels across English dialects
 James Tanner, Morgan Sonnergger and Jane Stuart-Smith .. 72

Domain-Informed Probing of wav2vec 2.0 Embeddings for Phonetic Features
 Patrick Cormac English, John D. Kelleher and Julie Carson-Berndsen 83

Morphotactic Modeling in an Open-source Multi-dialectal Arabic Morphological Analyzer and Generator
 Nizar Habash, Reham Marzouk, Christian Khairallah and Salam Khalifa 92

The SIGMORPHON 2022 Shared Task on Morpheme Segmentation

Sharing Data by Language Family: Data Augmentation for Romance Language Morpheme Segmentation
 Lauren Levine ... 117

SIGMORPHON 2022 Shared Task on Morpheme Segmentation Submission Description: Sequence Labelling for Word-Level Morpheme Segmentation
 Leander Girrbach ... 124

Beyond Characters: Subword-level Morpheme Segmentation
 Ben Peters and Andre F. T. Martins .. 131

Word-level Morpheme segmentation using Transformer neural network
 Tsolmon Zundi and Chinbat Avaajargal ... 139

Morfessor-enriched features and multilingual training for canonical morphological segmentation
 Aku Rouhe, Stig-Arne Grönroos, Sami Virpioja, Mathias Creutz and Mikko Kurimo 144
JB132 submission to the SIGMORPHON 2022 Shared Task 3 on Morphological Segmentation
Jan Bodnár .. 152

SIGMORPHON–UniMorph 2022 Shared Task 0: Modeling Inflection in Language Acquisition
Jordan Kodner and Salam Khalifa 157

SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection

SIGMORPHON 2022 Task 0 Submission Description: Modelling Morphological Inflection with Data-Driven and Rule-Based Approaches
Tatiana Merzhevich, Nkonye Gbadegoye, Leander Girrbach, Jingwen Li and Ryan Soh-Eun Shim 204

CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation
Silvan Wehrli, Simon Clematide and Peter Makarov 212

OSU at SigMorphon 2022: Analogical Inflection With Rule Features
Micha Elsner and Sara Court ... 220

Generalizing Morphological Inflection Systems to Unseen Lemmas
Changbing Yang, Ruixin (Ray) Yang, Garrett Nicolai and Miikka Silfverberg 226

HeiMorph at SIGMORPHON 2022 Shared Task on Morphological Acquisition Trajectories
Akhilesh Kakolu Ramarao, Yulia Zinova, Kevin Tang and Ruben van de Vijver 236

Morphology is not just a naive Bayes – UniMelb Submission to SIGMORPHON 2022 ST on Morphological Inflection
Andreas Sherbakov and Ekaterina Vylomova 240
Program

Thursday, July 14, 2022

08:45 - 09:00 Opening Remarks

09:00 - 10:00 Invited Talk 1: Laura Gwilliams: Parsing continuous speech into lexically bound phonetic sequences

10:00 - 10:30 Morning Break

10:30 - 11:30 Morning Session: Phonology and Phonetics

 Multidimensional acoustic variation in vowels across English dialects
 James Tanner, Morgan Sonderegger and Jane Stuart-Smith

 On Building Spoken Language Understanding Systems for Low Resourced Languages
 Akshat Gupta

 Domain-Informed Probing of wav2vec 2.0 Embeddings for Phonetic Features
 Patrick Cormac English, John D. Kelleher and Julie Carson-Berndsen

 Investigating phonological theories with crowd-sourced data: The Inventory Size Hypothesis in the light of Lingua Libre
 Mathilde Hutin and Marc Allassonnière-Tang

11:30 - 12:30 Lunch

13:30 - 15:00 Morning Session: Morphosyntax

 A Masked Segmental Language Model for Unsupervised Natural Language Segmentation
 C.M. Downey, Fei Xia, Gina-Anne Levow and Shane Steinert-Threlkeld

 Trees probe deeper than strings: an argument from allomorphy
 Hossef Dolutian, Shiori Ikawa and Thomas Graf
Thursday, July 14, 2022 (continued)

Logical Transductions for the Typology of Ditransitive Prosody
Mai Ha Vu, Aniello De Santo and Hossep Dolatian

Subword-based Cross-lingual Transfer of Embeddings from Hindi to Marathi and Nepali
Niyata Bafna and Zdeněk Žabokrtský

Morphotactic Modeling in an Open-source Multi-dialectal Arabic Morphological Analyzer and Generator
Nizar Habash, Reham Marzouk, Christian Khairallah and Salam Khalifa

Unsupervised morphological segmentation in a language with reduplication
Simon Todd, Annie Huang, Jeremy Needle, Jennifer Hay and Jeanette King

15:00 - 15:30 *Afternoon Break*

15:30 - 17:45 *Shared Task Session*

17:45 - 18:00 *Closing Statements*