@inproceedings{zundi-avaajargal-2022-word,
title = "Word-level Morpheme segmentation using Transformer neural network",
author = "Zundi, Tsolmon and
Avaajargal, Chinbat",
editor = "Nicolai, Garrett and
Chodroff, Eleanor",
booktitle = "Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigmorphon-1.15",
doi = "10.18653/v1/2022.sigmorphon-1.15",
pages = "139--143",
abstract = "This paper presents the submission of team NUM DI to the SIGMORPHON 2022 Task on Morpheme Segmentation Part 1, word-level morpheme segmentation. We explore the transformer neural network approach to the shared task. We develop monolingual models for world-level morpheme segmentation and focus on improving the model by using various training strategies to improve accuracy and generalization across languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zundi-avaajargal-2022-word">
<titleInfo>
<title>Word-level Morpheme segmentation using Transformer neural network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tsolmon</namePart>
<namePart type="family">Zundi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chinbat</namePart>
<namePart type="family">Avaajargal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleanor</namePart>
<namePart type="family">Chodroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the submission of team NUM DI to the SIGMORPHON 2022 Task on Morpheme Segmentation Part 1, word-level morpheme segmentation. We explore the transformer neural network approach to the shared task. We develop monolingual models for world-level morpheme segmentation and focus on improving the model by using various training strategies to improve accuracy and generalization across languages.</abstract>
<identifier type="citekey">zundi-avaajargal-2022-word</identifier>
<identifier type="doi">10.18653/v1/2022.sigmorphon-1.15</identifier>
<location>
<url>https://aclanthology.org/2022.sigmorphon-1.15</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>139</start>
<end>143</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word-level Morpheme segmentation using Transformer neural network
%A Zundi, Tsolmon
%A Avaajargal, Chinbat
%Y Nicolai, Garrett
%Y Chodroff, Eleanor
%S Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F zundi-avaajargal-2022-word
%X This paper presents the submission of team NUM DI to the SIGMORPHON 2022 Task on Morpheme Segmentation Part 1, word-level morpheme segmentation. We explore the transformer neural network approach to the shared task. We develop monolingual models for world-level morpheme segmentation and focus on improving the model by using various training strategies to improve accuracy and generalization across languages.
%R 10.18653/v1/2022.sigmorphon-1.15
%U https://aclanthology.org/2022.sigmorphon-1.15
%U https://doi.org/10.18653/v1/2022.sigmorphon-1.15
%P 139-143
Markdown (Informal)
[Word-level Morpheme segmentation using Transformer neural network](https://aclanthology.org/2022.sigmorphon-1.15) (Zundi & Avaajargal, SIGMORPHON 2022)
ACL