@inproceedings{wehrli-etal-2022-cluzh,
title = "{CLUZH} at {SIGMORPHON} 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation",
author = "Wehrli, Silvan and
Clematide, Simon and
Makarov, Peter",
editor = "Nicolai, Garrett and
Chodroff, Eleanor",
booktitle = "Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigmorphon-1.21",
doi = "10.18653/v1/2022.sigmorphon-1.21",
pages = "212--219",
abstract = "This paper describes the submissions of the team of the Department of Computational Linguistics, University of Zurich, to the SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation. Our submissions use a character-level neural transducer that operates over traditional edit actions. While this model has been found particularly wellsuited for low-resource settings, using it with large data quantities has been difficult. Existing implementations could not fully profit from GPU acceleration and did not efficiently implement mini-batch training, which could be tricky for a transition-based system. For this year{'}s submission, we have ported the neural transducer to PyTorch and implemented true mini-batch training. This has allowed us to successfully scale the approach to large data quantities and conduct extensive experimentation. We report competitive results for morpheme segmentation (including sharing first place in part 2 of the challenge). We also demonstrate that reducing sentence-level morpheme segmentation to a word-level problem is a simple yet effective strategy. Additionally, we report strong results in inflection generation (the overall best result for large training sets in part 1, the best results in low-resource learning trajectories in part 2). Our code is publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wehrli-etal-2022-cluzh">
<titleInfo>
<title>CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvan</namePart>
<namePart type="family">Wehrli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Clematide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Makarov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleanor</namePart>
<namePart type="family">Chodroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the submissions of the team of the Department of Computational Linguistics, University of Zurich, to the SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation. Our submissions use a character-level neural transducer that operates over traditional edit actions. While this model has been found particularly wellsuited for low-resource settings, using it with large data quantities has been difficult. Existing implementations could not fully profit from GPU acceleration and did not efficiently implement mini-batch training, which could be tricky for a transition-based system. For this year’s submission, we have ported the neural transducer to PyTorch and implemented true mini-batch training. This has allowed us to successfully scale the approach to large data quantities and conduct extensive experimentation. We report competitive results for morpheme segmentation (including sharing first place in part 2 of the challenge). We also demonstrate that reducing sentence-level morpheme segmentation to a word-level problem is a simple yet effective strategy. Additionally, we report strong results in inflection generation (the overall best result for large training sets in part 1, the best results in low-resource learning trajectories in part 2). Our code is publicly available.</abstract>
<identifier type="citekey">wehrli-etal-2022-cluzh</identifier>
<identifier type="doi">10.18653/v1/2022.sigmorphon-1.21</identifier>
<location>
<url>https://aclanthology.org/2022.sigmorphon-1.21</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>212</start>
<end>219</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation
%A Wehrli, Silvan
%A Clematide, Simon
%A Makarov, Peter
%Y Nicolai, Garrett
%Y Chodroff, Eleanor
%S Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F wehrli-etal-2022-cluzh
%X This paper describes the submissions of the team of the Department of Computational Linguistics, University of Zurich, to the SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation. Our submissions use a character-level neural transducer that operates over traditional edit actions. While this model has been found particularly wellsuited for low-resource settings, using it with large data quantities has been difficult. Existing implementations could not fully profit from GPU acceleration and did not efficiently implement mini-batch training, which could be tricky for a transition-based system. For this year’s submission, we have ported the neural transducer to PyTorch and implemented true mini-batch training. This has allowed us to successfully scale the approach to large data quantities and conduct extensive experimentation. We report competitive results for morpheme segmentation (including sharing first place in part 2 of the challenge). We also demonstrate that reducing sentence-level morpheme segmentation to a word-level problem is a simple yet effective strategy. Additionally, we report strong results in inflection generation (the overall best result for large training sets in part 1, the best results in low-resource learning trajectories in part 2). Our code is publicly available.
%R 10.18653/v1/2022.sigmorphon-1.21
%U https://aclanthology.org/2022.sigmorphon-1.21
%U https://doi.org/10.18653/v1/2022.sigmorphon-1.21
%P 212-219
Markdown (Informal)
[CLUZH at SIGMORPHON 2022 Shared Tasks on Morpheme Segmentation and Inflection Generation](https://aclanthology.org/2022.sigmorphon-1.21) (Wehrli et al., SIGMORPHON 2022)
ACL