@inproceedings{kakolu-ramarao-etal-2022-heimorph,
title = "{H}ei{M}orph at {SIGMORPHON} 2022 Shared Task on Morphological Acquisition Trajectories",
author = "Kakolu Ramarao, Akhilesh and
Zinova, Yulia and
Tang, Kevin and
van de Vijver, Ruben",
editor = "Nicolai, Garrett and
Chodroff, Eleanor",
booktitle = "Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigmorphon-1.24",
doi = "10.18653/v1/2022.sigmorphon-1.24",
pages = "236--239",
abstract = "This paper presents the submission by the HeiMorph team to the SIGMORPHON 2022 task 2 of Morphological Acquisition Trajectories. Across all experimental conditions, we have found no evidence for the so-called Ushaped development trajectory. Our submitted systems achieve an average test accuracies of 55.5{\%} on Arabic, 67{\%} on German and 73.38{\%} on English. We found that, bigram hallucination provides better inferences only for English and Arabic and only when the number of hallucinations remains low.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kakolu-ramarao-etal-2022-heimorph">
<titleInfo>
<title>HeiMorph at SIGMORPHON 2022 Shared Task on Morphological Acquisition Trajectories</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akhilesh</namePart>
<namePart type="family">Kakolu Ramarao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Zinova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruben</namePart>
<namePart type="family">van de Vijver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eleanor</namePart>
<namePart type="family">Chodroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the submission by the HeiMorph team to the SIGMORPHON 2022 task 2 of Morphological Acquisition Trajectories. Across all experimental conditions, we have found no evidence for the so-called Ushaped development trajectory. Our submitted systems achieve an average test accuracies of 55.5% on Arabic, 67% on German and 73.38% on English. We found that, bigram hallucination provides better inferences only for English and Arabic and only when the number of hallucinations remains low.</abstract>
<identifier type="citekey">kakolu-ramarao-etal-2022-heimorph</identifier>
<identifier type="doi">10.18653/v1/2022.sigmorphon-1.24</identifier>
<location>
<url>https://aclanthology.org/2022.sigmorphon-1.24</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>236</start>
<end>239</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HeiMorph at SIGMORPHON 2022 Shared Task on Morphological Acquisition Trajectories
%A Kakolu Ramarao, Akhilesh
%A Zinova, Yulia
%A Tang, Kevin
%A van de Vijver, Ruben
%Y Nicolai, Garrett
%Y Chodroff, Eleanor
%S Proceedings of the 19th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F kakolu-ramarao-etal-2022-heimorph
%X This paper presents the submission by the HeiMorph team to the SIGMORPHON 2022 task 2 of Morphological Acquisition Trajectories. Across all experimental conditions, we have found no evidence for the so-called Ushaped development trajectory. Our submitted systems achieve an average test accuracies of 55.5% on Arabic, 67% on German and 73.38% on English. We found that, bigram hallucination provides better inferences only for English and Arabic and only when the number of hallucinations remains low.
%R 10.18653/v1/2022.sigmorphon-1.24
%U https://aclanthology.org/2022.sigmorphon-1.24
%U https://doi.org/10.18653/v1/2022.sigmorphon-1.24
%P 236-239
Markdown (Informal)
[HeiMorph at SIGMORPHON 2022 Shared Task on Morphological Acquisition Trajectories](https://aclanthology.org/2022.sigmorphon-1.24) (Kakolu Ramarao et al., SIGMORPHON 2022)
ACL