@inproceedings{nikolaev-pado-2022-word,
title = "Word-order Typology in Multilingual {BERT}: A Case Study in Subordinate-Clause Detection",
author = "Nikolaev, Dmitry and
Pado, Sebastian",
editor = "Vylomova, Ekaterina and
Ponti, Edoardo and
Cotterell, Ryan",
booktitle = "Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigtyp-1.2",
doi = "10.18653/v1/2022.sigtyp-1.2",
pages = "11--21",
abstract = "The capabilities and limitations of BERT and similar models are still unclear when it comes to learning syntactic abstractions, in particular across languages. In this paper, we use the task of subordinate-clause detection within and across languages to probe these properties. We show that this task is deceptively simple, with easy gains offset by a long tail of harder cases, and that BERT{'}s zero-shot performance is dominated by word-order effects, mirroring the SVO/VSO/SOV typology.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nikolaev-pado-2022-word">
<titleInfo>
<title>Word-order Typology in Multilingual BERT: A Case Study in Subordinate-Clause Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Nikolaev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Pado</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edoardo</namePart>
<namePart type="family">Ponti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The capabilities and limitations of BERT and similar models are still unclear when it comes to learning syntactic abstractions, in particular across languages. In this paper, we use the task of subordinate-clause detection within and across languages to probe these properties. We show that this task is deceptively simple, with easy gains offset by a long tail of harder cases, and that BERT’s zero-shot performance is dominated by word-order effects, mirroring the SVO/VSO/SOV typology.</abstract>
<identifier type="citekey">nikolaev-pado-2022-word</identifier>
<identifier type="doi">10.18653/v1/2022.sigtyp-1.2</identifier>
<location>
<url>https://aclanthology.org/2022.sigtyp-1.2</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>11</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word-order Typology in Multilingual BERT: A Case Study in Subordinate-Clause Detection
%A Nikolaev, Dmitry
%A Pado, Sebastian
%Y Vylomova, Ekaterina
%Y Ponti, Edoardo
%Y Cotterell, Ryan
%S Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F nikolaev-pado-2022-word
%X The capabilities and limitations of BERT and similar models are still unclear when it comes to learning syntactic abstractions, in particular across languages. In this paper, we use the task of subordinate-clause detection within and across languages to probe these properties. We show that this task is deceptively simple, with easy gains offset by a long tail of harder cases, and that BERT’s zero-shot performance is dominated by word-order effects, mirroring the SVO/VSO/SOV typology.
%R 10.18653/v1/2022.sigtyp-1.2
%U https://aclanthology.org/2022.sigtyp-1.2
%U https://doi.org/10.18653/v1/2022.sigtyp-1.2
%P 11-21
Markdown (Informal)
[Word-order Typology in Multilingual BERT: A Case Study in Subordinate-Clause Detection](https://aclanthology.org/2022.sigtyp-1.2) (Nikolaev & Pado, SIGTYP 2022)
ACL