@inproceedings{list-etal-2022-sigtyp,
title = "The {SIGTYP} 2022 Shared Task on the Prediction of Cognate Reflexes",
author = "List, Johann-Mattis and
Vylomova, Ekaterina and
Forkel, Robert and
Hill, Nathan and
Cotterell, Ryan",
editor = "Vylomova, Ekaterina and
Ponti, Edoardo and
Cotterell, Ryan",
booktitle = "Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigtyp-1.7/",
doi = "10.18653/v1/2022.sigtyp-1.7",
pages = "52--62",
abstract = "This study describes the structure and the results of the SIGTYP 2022 shared task on the prediction of cognate reflexes from multilingual wordlists. We asked participants to submit systems that would predict words in individual languages with the help of cognate words from related languages. Training and surprise data were based on standardized multilingual wordlists from several language families. Four teams submitted a total of eight systems, including both neural and non-neural systems, as well as systems adjusted to the task and systems using more general settings. While all systems showed a rather promising performance, reflecting the overwhelming regularity of sound change, the best performance throughout was achieved by a system based on convolutional networks originally designed for image restoration."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="list-etal-2022-sigtyp">
<titleInfo>
<title>The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johann-Mattis</namePart>
<namePart type="family">List</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Forkel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Hill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edoardo</namePart>
<namePart type="family">Ponti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study describes the structure and the results of the SIGTYP 2022 shared task on the prediction of cognate reflexes from multilingual wordlists. We asked participants to submit systems that would predict words in individual languages with the help of cognate words from related languages. Training and surprise data were based on standardized multilingual wordlists from several language families. Four teams submitted a total of eight systems, including both neural and non-neural systems, as well as systems adjusted to the task and systems using more general settings. While all systems showed a rather promising performance, reflecting the overwhelming regularity of sound change, the best performance throughout was achieved by a system based on convolutional networks originally designed for image restoration.</abstract>
<identifier type="citekey">list-etal-2022-sigtyp</identifier>
<identifier type="doi">10.18653/v1/2022.sigtyp-1.7</identifier>
<location>
<url>https://aclanthology.org/2022.sigtyp-1.7/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>52</start>
<end>62</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes
%A List, Johann-Mattis
%A Vylomova, Ekaterina
%A Forkel, Robert
%A Hill, Nathan
%A Cotterell, Ryan
%Y Vylomova, Ekaterina
%Y Ponti, Edoardo
%Y Cotterell, Ryan
%S Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F list-etal-2022-sigtyp
%X This study describes the structure and the results of the SIGTYP 2022 shared task on the prediction of cognate reflexes from multilingual wordlists. We asked participants to submit systems that would predict words in individual languages with the help of cognate words from related languages. Training and surprise data were based on standardized multilingual wordlists from several language families. Four teams submitted a total of eight systems, including both neural and non-neural systems, as well as systems adjusted to the task and systems using more general settings. While all systems showed a rather promising performance, reflecting the overwhelming regularity of sound change, the best performance throughout was achieved by a system based on convolutional networks originally designed for image restoration.
%R 10.18653/v1/2022.sigtyp-1.7
%U https://aclanthology.org/2022.sigtyp-1.7/
%U https://doi.org/10.18653/v1/2022.sigtyp-1.7
%P 52-62
Markdown (Informal)
[The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes](https://aclanthology.org/2022.sigtyp-1.7/) (List et al., SIGTYP 2022)
ACL
- Johann-Mattis List, Ekaterina Vylomova, Robert Forkel, Nathan Hill, and Ryan Cotterell. 2022. The SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes. In Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP, pages 52–62, Seattle, Washington. Association for Computational Linguistics.