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Abstract
Documenting languages helps to prevent the extinction of endangered dialects – many of which are otherwise expected to dis-
appear by the end of the century. When documenting oral languages, unsupervised word segmentation (UWS) from speech is
a useful, yet challenging, task. It consists in producing time-stamps for slicing utterances into smaller segments corresponding
to words, being performed from phonetic transcriptions, or in the absence of these, from the output of unsupervised speech
discretization models. These discretization models are trained using raw speech only, producing discrete speech units that can
be applied for downstream (text-based) tasks. In this paper we compare five of these models: three Bayesian and two neural
approaches, with regards to the exploitability of the produced units for UWS. For the UWS task, we experiment with two
models, using as our target language the Mboshi (Bantu C25), an unwritten language from Congo-Brazzaville. Additionally,
we report results for Finnish, Hungarian, Romanian and Russian in equally low-resource settings, using only 4 hours of speech.
Our results suggest that neural models for speech discretization are difficult to exploit in our setting, and that it might be
necessary to adapt them to limit sequence length. We obtain our best UWS results by using Bayesian models that produce high
quality, yet compressed, discrete representations of the input speech signal.
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1. Introduction

Popular models for speech processing still rely on the
availability of considerable amounts of speech data and
their transcriptions, which reduces model applicabil-
ity to a limited subset of languages considered high-
resource. This excludes a considerable number of low-
resource languages, including many from oral tradi-
tion. Besides, learning supervised representations from
speech differs from the unsupervised way infants learn
language, hinting that it should be possible to develop
more data-efficient speech processing models.
Recent efforts for zero-resource processing (Glass,
2012; Jansen et al., 2013; Versteegh et al., 2016; Dun-
bar et al., 2017; Dunbar et al., 2019; Dunbar et al.,
2020) focus on building speech systems using limited
amounts of data (hence zero resource), and without
textual or linguistic resources, for increasingly chal-
lenging tasks such as acoustic or lexical unit discov-
ery. Such zero resource approaches also stimulated in-
terest for computational language documentation (Be-
sacier et al., 2006; Duong et al., 2016; Godard et al.,
2018; Bird, 2021) and computational language acqui-
sition (Dupoux, 2018).
In this paper we address the challenging task of un-
supervised word segmentation (UWS) from speech.
This task consists of outputting time-stamps delimiting
stretches of speech, associated with class labels corre-
sponding to word hypotheses, without access to any

supervision. We build on the work presented in Go-
dard et al. (2018): they proposed a cascaded model for
UWS that first generates a discrete sequence from the
speech signal using the model from Ondel et al. (2016),
and then segments the discrete sequence into words us-
ing a Bayesian (Goldwater, 2007) or a neural (Boito
et al., 2017) approach. Since then, much progress has
been made in automatic speech discretization: efficient
Bayesian models for acoustic unit discovery (AUD)
emerged (Ondel et al., 2019; Yusuf et al., 2021), and
self-supervised models based on neural networks – typ-
ically made of an auto-encoder structure with a dis-
cretization layer – were also introduced (van den Oord
et al., 2017; Baevski et al., 2020a; Chorowski et al.,
2019).
Therefore, in this work we revise and extend Godard et
al. (2018) by empirically investigating the exploitabil-
ity of five recent approaches for speech discretization
for the UWS task in a rather low-resource scenario, us-
ing approximately 4 hours of speech (roughly 5k sen-
tences). More precisely, we train three Bayesian speech
discretization models (HMM (Ondel et al., 2016),
SHMM (Ondel et al., 2019) and H-SHMM (Yusuf et
al., 2021)), and two neural models (VQ-VAE (van den
Oord et al., 2017) and vq-wav2vec (Baevski et al.,
2020a)). We extract discrete speech units from them
using only 4 hours of speech, and we perform UWS
from the sequences produced. Our pipeline targets the
Mboshi language (Bantu C25), an unwritten language
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from Congo-Brazzaville. Additionally, we perform ex-
periments in equal data settings for Finnish, Hungar-
ian, Romanian and Russian. This allows us to assess
the language-related impact in our UWS pipeline.
Our experiments show that neural models for speech
discretization are difficult to exploit for UWS, as they
output very long sequences. In contrast to that, the
Bayesian speech discretization approaches from Ondel
et al. (2019) and Yusuf et al. (2021) are robust and gen-
eralizable, producing high quality, yet compressed, dis-
crete speech sequences from the input utterances in all
languages. We obtain our best results by using these se-
quences for training the neural UWS model from Boito
et al. (2017).
This paper is organized as follows. Section 2 presents
related work, and Section 3 details the speech dis-
cretization models we experiment with. Section 4
presents our experimental setup, and Section 5 our ex-
periments. Section 6 concludes our work.

2. Related Work
The work presented here revises the UWS model from
speech in low-resource settings presented in Godard et
al. (2018). Boito et al. (2019) complemented that work
by tackling different neural models for bilingual UWS,
but they did not address the discretization portion of the
pipeline, working directly from manual phonetic tran-
scriptions. In Kamper and van Niekerk (2021), the au-
thors propose constraining the VQ-VAE model in order
to generate a more exploitable output representation for
direct application to the UWS task in English. Different
from that, in this work we focus on providing an em-
pirical comparison of recent discretization approaches,
extending Godard et al. (2018) and providing results in
low-resource settings, and in five different languages.
This work falls into the category of computational lan-
guage documentation approaches. Recent works in
this field include the use of aligned translation for im-
proving transcription quality (Anastasopoulos and Chi-
ang, 2018), and for obtaining bilingually grounded
UWS (Duong et al., 2016; Boito et al., 2017). We
find pipelines for obtaining manual (Foley et al., 2018)
and automatic (Michaud et al., 2018) transcriptions,
and for aligning transcription and audio (Strunk et al.,
2014). Other examples are methods for low-resource
segmentation (Lignos and Yang, 2010; Goldwater et
al., 2009), and for lexical unit discovery without textual
resources (Bartels et al., 2016). Finally, direct speech-
to-speech (Tjandra et al., 2019) and speech-to-text (Be-
sacier et al., 2006; Bérard et al., 2016) architectures
could be an option for the lack of transcription, but it
remains to be seen how exploitable these architectures
can be in low-resource settings.
Lastly, we highlight that recent models based on self-
supervised learning (Schneider et al., 2019; Baevski et
al., 2019; Wang et al., 2020; Liu et al., 2020; Baevski
et al., 2020b; Hsu et al., 2021) provide an interesting
novel option for reducing the amount of labeled data

needed in downstream tasks such as automatic speech
recognition and speech translation. In this work we
experiment with the vq-wav2vec model, a predeces-
sor of the popular wav2vec 2.0 (Baevski et al., 2020b).
We however, do not extend our investigation to the lat-
ter, or to models such as HuBERT (Hsu et al., 2021).
This is because, while these models do produce a cer-
tain discretization of the speech (for wav2vec 2.0 via
quantization module, for HuBERT via clustering of
MFCC features), we judge this discretization to be in-
sufficiently exploitable for downstream text-based ap-
proaches due to their excessive length.1 We do, how-
ever, find promising the integration of self-supervised
speech features into Bayesian AUD models as in On-
del et al. (2022).

3. Unsupervised Speech Discretization
Models

Speech discretization consists in labeling the speech
signal into discrete speech units, which can correspond
or not to the language phonetic inventory. This prob-
lem can be formulated as the learning of a set of U dis-
crete units with embeddings H = {η1, . . . ,ηU} from
a sequence of untranscribed acoustic features X =
[x1, . . . ,xN ], as well as the assignment of frame to unit
z = [z1, . . . , zN ]. Depending on the approach, neu-
ral (Section 3.1) or Bayesian (Section 3.2), the assump-
tions and the inference regarding these three quantities
will differ.

3.1. Neural (VQ-based) models
VQ-VAE. It comprises an encoder, a decoder, and
a set of unit-specific embeddings H. The encoder
is a neural network that transforms the data into a
continuous latent representation V = (v1, . . . ,vN ).
Each frame is then assigned to the closest embedding
in the Euclidean sense (Equation 1). The decoder
transforms the sequence of quantized vectors into
parameters of the conditional log-likelihood of the
data p(xn|z), and the network is trained to max-
imize this likelihood. Since the quantization step
is not differentiable, the encoder is trained with a
straight through estimator (Bengio et al., 2013). In
addition, a pair of ℓ2 losses are used to minimize
the quantization error, and the overall objective func-
tion that is maximized is presented in Equation 2,
where sg[·] is the stop-gradient operator. We de-
fine the likelihood p(xn|zn) = N (xn;µ(η

zn), I).
Under this assumption, the log-likelihood reduces
to the mean-squared error ||xn − µ(ηzn)||22.

zn = argmin
u

||vn − ηu||2. (1)

1For instance, wav2vec 2.0 trains on a joint diversity loss
for inciting the use of its discrete units. Their large codebook
of G = 8;V = 8 results in an upper-bound of 88 units.
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L =
1

N

N∑
n=1

(
ln p(xn|zn)− k1|| sg[ηzn ]− vn||22

− k2||ηzn − sg[vn]||22
)
, (2)

vq-wav2vec. This model is composed of an en-
coder (f : X −→ Z), a quantizer (q : Z −→ Ẑ) and
an aggregator (g : Ẑ −→ C). The encoder is a CNN
which maps the raw speech input X into the dense fea-
ture representation Z. From this representation, the
quantizer produces discrete labels Ẑ from a fixed-size
codebook e ∈ RV×d with V representations of size
d. Since replacing an encoder feature vector zi by a
single entry in the codebook makes the method prone
to model collapse, the authors independently quantize
partitions of each feature vector by creating multiple
groups G, arranging the feature vector into a matrix
z′ ∈ RG×(d/G). Considering each row as an integer
index, the full feature vector is represented by the in-
dices i ∈ [V ]G, with V being the possible number of
variables for a given group, and each element ij corre-
sponding to a fixed codebook vector (j ∈ |G|). For
each of the G groups, the quantization is performed
by using Gumbel-Softmax (Jang et al., 2017) or on-
line k-means clustering. Finally, the aggregator com-
bines multiple quantized feature vector time-steps into
a new representation ci for each time step i. The model
is trained to distinguish a sample k steps in the future
ẑi+k from distractor samples z̃ drawn from a distri-
bution pn. This is done by minimizing the contrastive
loss for steps k = {1, . . . ,K} as in Equation 3, where
T is the sequence length, σ(x) = 1/(1 + exp(−x)),
σ(ẑ⊺i+khk(ci)) is the probability of ẑi+k being the true
sample, and hk(ci) is the step-specific affine transfor-
mation hk(ci) = Wkci + bk. Finally, this loss is accu-
mulated over all k steps L =

∑K
k=1 Lk.

Lk =
T−k∑
i=1

(
log σ(ẑ⊺i+khk(ci))

+ λEz̃∼pn
[log σ(−z̃⊺hk(ci))]

)
(3)

Training. For VQ-VAE, the encoder has 4 Bi-LSTM
layers each with output dimension 128 followed by a
16-dimensional feed-forward decoder with one hidden
layer. The number of discovered units (quantization
centroids) is set to 50. This setting is unusually low
but it helps to reduce the length of the output sequence.
We set k1 = 2 and k2 = 4 (Equation 2), and train2 with
Adam (Kingma and Ba, 2015) with an initial learning
rate of 2 × 10−3 which is halved whenever the loss
stagnates for two training epochs.
For vq-wav2vec, we use the small model from
(Baevski et al., 2020a),3 but with only 64 channels,

2Implementation available at: https://github.
com/BUTSpeechFIT/vq-aud

3Implementation available at: https://
github.com/pytorch/fairseq/tree/master/
examples/wav2vec

residual scale of 0.2, and warm-up of 10k. For vocabu-
lary we set G = 2 and experimented with having both
V = 4, resulting in 16 units (VQ-W2V-V16), and V =
6, resulting in 36 units (VQ-W2V-V36). Larger vocab-
ularies resulted in excessively long sequences which
could not be used for UWS.4 We also experimented
reducing the representation by using byte pair encod-
ing (BPE) (Sennrich et al., 2016), hypothesizing that
phones were being modeled by a combination of dif-
ferent units. In this setting, BPE serves as a method
for identifying and clustering these patterns. Surpris-
ingly, we found that using BPE resulted in a decrease
in UWS performance. This hints that this model might
not be very consistent during its labeling process.

3.2. Bayesian Generative Models
For generative models, each acoustic unit embedding
ηi represents the parameters of a probability distribu-
tion p(xn|ηzn , zn) with latent variables z. Discovering
the units amounts to estimating the posterior distribu-
tion over the embeddings H and the assignment vari-
ables z given by:

p(z,H|X) ∝ p(X|z,H)p(z|H)
U∏

u=1

p(ηu). (4)

From this, we describe three different approaches.

HMM. In this model each unit is a 3-state left-to-
right HMM with parameters ηi. Altogether, the set
of units forms a large HMM analog to a “phone-loop”
recognition model. This model, described in Ondel et
al. (2016), serves as the backbone for the two subse-
quent models.

SHMM. The prior p(η) in Equation 4 is the prob-
ability that a sound, represented by an HMM with pa-
rameters η, is an acoustic unit. For the former model, it
is defined as a combination of exponential family dis-
tributions forming a prior conjugate to the likelihood.
While mathematically convenient, this prior does not
incorporate any knowledge about phones, i.e. it con-
siders all possible sounds as potential acoustic units. In
Ondel et al. (2019), they propose to remedy this short-
coming by defining the parameters of each unit u as
in Equation 5, where eu is a low-dimensional unit em-
bedding, W and b are the parameters of the phonetic
subspace, and the function f(·) ensures that the result-
ing vector ηu dwells in the HMM parameter space. The
subspace, defined by W and b, is estimated from sev-
eral labeled source languages. The prior p(η) is defined
over the low-dimensional embeddings p(e) rather than
η directly, therefore constraining the search of units
in the relevant region of the parameter space. This
model is denoted as the Subspace HMM (SHMM).

ηu = f(W · eu + b) (5)

4For instance, the dpseg original implementation only
processes sequences shorter than 350 tokens.

https://github.com/BUTSpeechFIT/vq-aud
https://github.com/BUTSpeechFIT/vq-aud
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
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H-SHMM. While the SHMM significantly improves
results over the HMM, it also suffers from an unrealis-
tic assumption: it assumes that the phonetic subspace
is the same for all languages. Yusuf et al. (2021) relax
this assumption by proposing to adapt the subspace for
each target language while learning the acoustic units.
Formally, for a given language λ, the subspace and the
acoustic units’ parameters are constructed as in Equa-
tion 6-8, where the matrices M0, . . . ,MK and vec-
tors m0, . . . ,mK represent some “template” phonetic
subspace linearly combined by a language embedding
αλ = [αλ

1 , α
λ
2 , . . . , α

λ
K ]⊤. The matrices Mi and the

vectors mi are estimated from labeled languages –
from multilingual transcribed speech dataset for in-
stance. The acoustic units’ low-dimensional embed-
dings {ei} and the language embedding α are learned
on the target (unlabeled) speech data. We refer to this
model as the Hierarchical SHMM (H-SHMM).

Wλ = M0 +
K∑

k=1

αλ
kMk (6)

bλ = m0 +
K∑

k=1

αλ
kmk (7)

ηλ,u = f(Wλ · eλ,u + bλ) (8)

Inference. For the three generative models, the pos-
terior distribution is intractable and cannot be esti-
mated. Instead, one seeks an approximate posterior
q({ηi}, z) = q({ηi})q(z) that maximizes the varia-
tional lower-bound L[q]. Concerning the estimation
of q(z), the expectation step is identical for all mod-
els and is achieved with a modified forward-backward
algorithm described in Ondel et al. (2016). Estimation
of q(η), the maximization step, is model-specific and
is described in Ondel et al. (2016) for the HMM, in
Ondel et al. (2019) for SHMM models, and in Yusuf et
al. (2021) for the H-SHMM model. Finally, the output
of each system is obtained from a modified Viterbi al-
gorithm that uses the expectation of the log-likelihoods
with respect to q({ηi}), instead of point estimates.

Training. The models are trained with 4 Gaussians
per HMM state and using 100 for the Dirichlet pro-
cess’ truncation parameter. SHMM and H-SHMM use
an embedding size of 100, and H-SHMM models have
a 6-dimensional language embedding. For the methods
that use subspaces estimation (SHMM and H-SHMM),
this estimation uses the following languages: French,
German, Spanish, Polish from the Globalphone cor-
pus (Schultz et al., 2013), as well as Amharic (Abate et
al., 2005), Swahili (Gelas et al., 2012) and Wolof (Gau-
thier et al., 2016) from the ALFFA project (Besacier et
al., 2015). We use 2-3 hours subsets of each, for a total
of roughly 19 hours.

4. Experimental Setup
From the discrete speech units produced by the pre-
sented speech discretization models, we produce seg-
mentation in the symbolic domain by using two UWS

#Types #Tokens Avg Token
Length

Avg #Tokens
per Sentence

MB-FR MB* 6,633 30,556 4.2 6.0
FR 5,162 42,715 4.4 8.3

MaSS

FI* 12,088 70,226 6.0 13.2
HU* 12,993 69,755 5.9 13.1
RO* 6,795 84,613 4.5 15.9
RU* 10,624 67,176 6.2 12.6
FR 7,226 94,527 4.1 17.8

Table 1: Statistics for the datasets, computed over the
text (FR), or over the phonetic representation (*).

HMM SHMM H-SHMM

R
AW

# Units 77 (+9) 76 (+8) 49 (-19)
Avg #Units
per sequence 27.5 (+8.7) 24.0 (+5.2) 21.7 (+2.9)

Max Length 68 (+17) 69 (+18) 63 (+12)

+S
IL

# Units 75 (+7) 75 (+7) 47 (-21)
Avg #units
per sequence 20.9 (+2.1) 19.9 (+1.1) 19.4 (+0.6)

Max Length 69 (+18) 62 (+11) 60 (+9)
VQ-VAE VQ-W2V-16 VQ-W2V-36

R
AW

# Units 50 (-18) 16 (-52) 36 (-32)
Avg #units
per sequence 65.2 (+46.4) 81.7 (+62.9) 111.0 (+92.2)

Max Length 217 (+166) 289 (+238) 361 (+310)

+S
IL

# Units 50 (-18) 16 (-52) 36 (-32)
Avg #units
per sequence 43.4 (+24.6) 52.6 (+33.8) 76.2 (+57.4)

Max Length 143 (+92) 229 (+178) 271 (+220)

Table 2: Statistics for the discrete speech units pro-
duced for the Mboshi, with the difference between the
produced and reference representation between paren-
theses. RAW is the original output from speech dis-
cretization models, +SIL is the result after silence post-
processing. Other languages follow the same trend.

models. A final speech segmentation is then inferred
using the units’ time-stamps and evaluated by using
the Zero-Resource Challenge 2017 evaluation suite,
track 2 (Dunbar et al., 2017)5. We now detail the UWS
models used in this work, which are trained with the
same parameters from Godard et al. (2018). We also
detail the datasets and the post-processing for the dis-
crete speech discrete units.

Bayesian UWS approach (monolingual). Non-
parametric Bayesian models (Goldwater, 2007; John-
son and Goldwater, 2009) are statistical approaches for
UWS and morphological analysis, known to be robust
in low-resource settings (Godard et al., 2016). In these
models, words are generated by a unigram or bigram
model over an infinite inventory, through the use of a
Dirichlet process. In this work, we use the unigram
model from dpseg (Goldwater et al., 2009)6, which
was shown to be superior to the bigram model in low-
resource settings (Godard, 2019).

Neural UWS approach (bilingual). We follow the
bilingual pipeline from Godard et al. (2018). The dis-
crete speech units and their sentence-level translations
are fed to an attention-based neural machine transla-

5Resources are available at http://zerospeech.
com/2017

6Implementation available at http://homepages.
inf.ed.ac.uk/sgwater/resources.html

http://zerospeech.com/2017
http://zerospeech.com/2017
http://homepages.inf.ed.ac.uk/sgwater/resources.html
http://homepages.inf.ed.ac.uk/sgwater/resources.html
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Figure 1: Heatmaps for the soft-alignment probability
matrices generated by the neural UWS models (bilin-
gual) trained on different discrete speech units, for the
same French-Mboshi sentence. The darker the square,
the higher the pair probability. The rows present the
automatically generated units from the different dis-
cretization models, informed in the bottom.

tion system that produces soft-alignment probability
matrices between source and target sequences. For
each sentence pair, its matrix is used for clustering to-
gether (segmenting) neighboring phones whose align-
ment distribution peaks at the same source word. Ex-
amples of these matrices are provided in Figure 1. We
refer to this model as neural.
Datasets. We use the Mboshi-French parallel cor-
pus (MB-FR) (Godard et al., 2018), which is a 5,130
sentence corpus from the language documentation pro-
cess of Mboshi (Bantu C25), an oral language spo-
ken in Congo-Brazzaville. We also report results us-
ing an extract from the MaSS corpus (Boito et al.,
2020), a multilingual speech-to-speech and speech-to-
text dataset. We use the down-sampling from Boito et
al. (2020), which results in 5,324 aligned sentences.
We exclude French and Spanish, as these languages
are present in the subspace prior from SHMM and H-
SHMM models, and we exclude English as it was used
as to tune the hyperparameters of the subspace models
and the VQ-VAE. We also exclude Basque, as the se-
quences produced were too long for UWS training. The
final set of languages is: Finnish (FI), Hungarian (HU),
Romanian (RO) and Russian (RU). In all cases, the
French (FR) translations are used as supervision for
the neural UWS approach. Statistics are presented in
Table 1.

Discrete Speech Units Post-processing. We exper-
iment with reducing the representation by removing
units predicted in silence windows. For this, we use the
gold references’ silence annotations. Removing these
allow us to focus the investigation on the quality of the
units generated in relevant portions of the speech. We
see in Table 2 that removing windows that we know
correspond to silence considerably reduces the num-
ber of units generated by all models. Before UWS
evaluation, the silence windows are reintroduced to en-
sure that their segmentation boundaries are taken into

dpseg neural
RAW +SIL RAW +SIL

1 HMM 32.4 59.9 35.1 61.2
2 SHMM 43.7 61.4 41.4 64.7
3 H-SHMM 45.3 61.4 44.8 63.9
4 VQ-VAE 39.0 52.7 32.1 60.1
5 VQ-W2V-V16 37.4 52.2 32.0 50.6
6 VQ-W2V-V36 - 48.0 - 49.8
7 True Phones - 77.1 - 74.5

Table 3: UWS Boundary F-scores for the MB-FR
dataset.

account. This approach is justified because a silence
detector is an inexpensive resource to obtain. For in-
stance, popular software such as Praat (Boersma, 2006)
are able to handle this task in any language. Figure 2
exemplifies the discrete speech units discovered by the
models before applying this post-processing.

5. Experiments
We first present our results for the MB-FR dataset, the
language which corresponds to the true low-resource
scenario that we are interested in. Table 3 presents
UWS Boundary F-scores for UWS models (dpseg and
neural) trained using different discrete speech units
for the MB-FR dataset. We include results for both
the direct output (RAW) and the post-processed ver-
sion (+SIL). The RAW VQ-W2V-V36 is not included
as its output sequences were excessively large for train-
ing our UWS models (Table 2).
We observe that in all cases, post-processing the dis-
crete speech units with the silence information (+SIL)
creates easier representations for the UWS task. We
believe this is due to the considerable reduction in av-
erage length of the sequences (Table 2). For Bayesian
models, we also observe a reduction in the number of
units, meaning that some units were modelling silence
windows, even though these models already produce an
independent token for silence, which we remove before
UWS training.
Looking at the results for UWS models trained using
the output of VQ-based models (rows 4-6), we see that
the best segmentation result is achieved using the one
with the smallest average sequence length (VQ-VAE).
In general, we believe that all VQ-based models under-
perform due to the excessively long sequences pro-
duced, which are challenging for UWS. Figure 2 illus-
trates this difference in representation length, by pre-
senting the discrete speech units produced by Bayesian
and neural models for a given utterance: the latter pro-
duce considerably more units.
Overall, we find that UWS models trained using the
discrete speech units from Bayesian models produce
better segmentation, with models trained with SHMM
and H-SHMM presenting the best results. In Yusuf et
al. (2021) both systems showed competitive results
for the AUD task. A noticeable difference between
these two models is the compression level: H-SHMM
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(a) HMM

(b) SHMM

(c) H-SHMM

(d) VQ-VAE

(e) VQ-W2V-V16

(f) VQ-W2V-V36

Figure 2: Speech discrete units produced by the five
models for the same Mboshi sentence. Black lines de-
note the true boundaries, while dashed white lines de-
note the discovered units boundaries. For each exam-
ple, discrete speech units (top) and reference (bottom).

dpseg neural
FI HU RO RU FI HU RO RU

HMM 45.6 49.9 53.5 47.1 53.4 51.2 56.6 54.9
SHMM 49.0 52.3 53.5 50.5 56.0 53.9 57.7 57.7
H-SHMM 50.5 52.9 58.0 52.9 56.1 53.3 59.6 56.0
True Phones 87.1 83.3 88.0 85.9 68.4 63.4 75.7 68.4

Table 4: UWS Boundary F-scores for the MaSS dataset
using Bayesian models (+SIL only). Best UWS re-
sults from speech discrete units (bold) and from true
phones (underlined) are highlighted.

uses 27 fewer units than SHMM. Regarding type re-
trieval, the models scored 12.1% (SHMM), 10.7% (H-
SHMM), and 31% (topline). We also find that SHMM
models produced more types and fewer tokens, reach-
ing a higher Type-Token Ratio (0.63) compared to H-
SHMM (0.55).
Focusing on the generalization of the presented speech
discretization models, we trained our models using four

languages from the MaSS dataset. We observed that
due to the considerably larger average length of the
sentences (Table 1), the VQ-based models produced
sequences which we were unable to directly apply to
UWS training. This again highlights that these models
need some constraining, or post-processing, in order
to be directly exploitable for UWS. Focusing on the
Bayesian models, which performed the best for gen-
erating exploitable discrete speech units for UWS in
low-resource settings, Table 4 present UWS results.
We omit results for RAW, as we observe the same
trend from Table 3. Looking at the results for the four
languages, we again observe competitive results for
SHMM and H-SHMM models, illustrating that these
approaches generalize well to different languages.
Comparing the UWS results present in Ta-
ble 3 (Mboshi) and Table 4 (languages from MaSS),
we notice overall lower results for the languages from
the MaSS dataset (best result: 59.6) compared to
Mboshi (best result: 64.7). We believe this is due to
the MaSS data coming from read text, in which the
utterances correspond to verses that are consistently
longer than sentences (Table 1). This results in a more
challenging setting for UWS and explains the lower re-
sults. Lastly, our results over five languages show that
the neural UWS model produces better segmentation
results from discrete speech units than dpseg, which in
turn performs the best with the true phones (topline).
This confirms the trend observed by (Godard et al.,
2018). The neural UWS models have the advantage
of their word-level aligned translations for grounding
the segmentation process, which might be attenuating
the difficulty of the task in this noisier scenario,
with longer sequences and more units. Moreover, a
benefit of these models is the potentially exploitable
bilingual alignment discovered during training. Boito
et al. (2019) used these alignments for filtering the
generated vocabulary, increasing type retrieval.

6. Conclusion
In this paper we compared five methods for speech
discretization, two neural models (VQ-VAE, VQ-
WAV2VEC), and three Bayesian approaches (HMM,
SHMM, H-SHMM), with respect to their performance
serving as direct input to the task of unsupervised word
segmentation (UWS) in low-resource settings. Our mo-
tivation for such a study lies in the need of process-
ing oral and low-resource languages, for which obtain-
ing transcriptions is a known bottleneck (Brinckmann,
2009).
In our UWS setting, and using five different languages
(Finnish, Hungarian, Mboshi, Romanian and Russian),
we find that VQ-based methods are not a good fit for
our pipeline, as they output very long and inconsistent
sequences, which are difficult to treat. This was also
recently observed in Kamper and van Niekerk (2021).
In contrast to that, the Bayesian SHMM and H-SHMM
models perform the best, as they produced concise yet
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highly exploitable representations from just few hours
of speech. We believe this difference in performance
is due to HMM-based models explicitly performing
acoustic unit discovery. This means the discretiza-
tion produced by them aims not only to summarize
the speech signal, but to closely match the language’s
phonology. Moreover, the subspace estimation per-
formed by both SHMM and H-SHMM, might also play
a significant role. This is because these models are able
to learn from an additional 19 hours of data in differ-
ent languages. The other models (HMM and VQ-based
models) do not have access to any form of pretraining
or prior.
Finally, comparing the neural and Bayesian UWS ap-
proaches, we notice that the neural model is competi-
tive in the noisier setting, reaching better UWS bound-
ary scores working with the output of speech discretiza-
tion models. The Bayesian model is however better at
segmenting true phones (topline scenario). Conclud-
ing, this work updates Godard et al. (2018) by using
more recent speech discretization models, and present-
ing better UWS results for Mboshi.
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ational inference for acoustic unit discovery. Proce-
dia Computer Science, 81:80–86.

Ondel, L., Vydana, H. K., Burget, L., and Černocký, J.
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É. L., and Besacier, L. (2020). Mass: A large and
clean multilingual corpus of sentence-aligned spo-
ken utterances extracted from the bible. Language
Resources and Evaluation Conference (LREC).

Gauthier, E., Besacier, L., Voisin, S., Melese, M., and
Elingui, U. P. (2016). Collecting Resources in Sub-
Saharan African Languages for Automatic Speech
Recognition: a Case Study of Wolof. LREC.

Gelas, H., Besacier, L., and Pellegrino, F. (2012).
Developments of Swahili resources for an auto-
matic speech recognition system. In SLTU - Work-
shop on Spoken Language Technologies for Under-
Resourced Languages, Afrique Du Sud.

Godard, P., Adda, G., Adda-Decker, M., Benjumea,
J., Besacier, L., Cooper-Leavitt, J., Kouarata, G.-N.,
Lamel, L., Maynard, H., Mueller, M., Rialland, A.,
Stueker, S., Yvon, F., and Boito, M. Z. (2018). A
very low resource language speech corpus for com-
putational language documentation experiments. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan, May. European Language
Resources Association (ELRA).

Schultz, T., Vu, N. T., and Schlippe, T. (2013). Global-
phone: A multilingual text & speech database in 20
languages. In International Conference on Acous-
tics, Speech and Signal Processing. IEEE.


