@inproceedings{morais-etal-2022-bioinfo,
title = "{B}io{I}nfo@{UAVR}@{SMM}4{H}{'}22: Classification and Extraction of Adverse Event mentions in Tweets using Transformer Models",
author = "Morais, Edgar and
Oliveira, Jos{\'e} Luis and
Trifan, Alina and
Fajarda, Olga",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.19",
pages = "65--67",
abstract = "This paper describes BioInfo@UAVR team{'}s approach for adressing subtasks 1a and 1b of the Social Media Mining for Health Applications 2022 shared task. These sub-tasks deal with the classification of tweets that contain an Adverse Drug Event mentions and the detection of spans that correspond to those mentions. Our approach relies on transformer-based models, data augmentation, and an external dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morais-etal-2022-bioinfo">
<titleInfo>
<title>BioInfo@UAVR@SMM4H’22: Classification and Extraction of Adverse Event mentions in Tweets using Transformer Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edgar</namePart>
<namePart type="family">Morais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="given">Luis</namePart>
<namePart type="family">Oliveira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alina</namePart>
<namePart type="family">Trifan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Fajarda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes BioInfo@UAVR team’s approach for adressing subtasks 1a and 1b of the Social Media Mining for Health Applications 2022 shared task. These sub-tasks deal with the classification of tweets that contain an Adverse Drug Event mentions and the detection of spans that correspond to those mentions. Our approach relies on transformer-based models, data augmentation, and an external dataset.</abstract>
<identifier type="citekey">morais-etal-2022-bioinfo</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.19</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>65</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BioInfo@UAVR@SMM4H’22: Classification and Extraction of Adverse Event mentions in Tweets using Transformer Models
%A Morais, Edgar
%A Oliveira, José Luis
%A Trifan, Alina
%A Fajarda, Olga
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F morais-etal-2022-bioinfo
%X This paper describes BioInfo@UAVR team’s approach for adressing subtasks 1a and 1b of the Social Media Mining for Health Applications 2022 shared task. These sub-tasks deal with the classification of tweets that contain an Adverse Drug Event mentions and the detection of spans that correspond to those mentions. Our approach relies on transformer-based models, data augmentation, and an external dataset.
%U https://aclanthology.org/2022.smm4h-1.19
%P 65-67
Markdown (Informal)
[BioInfo@UAVR@SMM4H’22: Classification and Extraction of Adverse Event mentions in Tweets using Transformer Models](https://aclanthology.org/2022.smm4h-1.19) (Morais et al., SMM4H 2022)
ACL