@inproceedings{lain-etal-2022-ku,
title = "{KU}{\_}{ED} at {S}ocial{D}is{NER}: Extracting Disease Mentions in Tweets Written in {S}panish",
author = "Lain, Antoine and
Yoon, Wonjin and
Kim, Hyunjae and
Kang, Jaewoo and
Simpson, Ian",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.23",
pages = "78--80",
abstract = "This paper describes our system developed for the Social Media Mining for Health (SMM4H) 2022 SocialDisNER task. We used several types of pre-trained language models, which are trained on Spanish biomedical literature or Spanish Tweets. We showed the difference in performance depending on the quality of the tokenization as well as introducing silver standard annotations when training the model. Our model obtained a strict F1 of 80.3{\%} on the test set, which is an improvement of +12.8{\%} F1 (24.6 std) over the average results across all submissions to the SocialDisNER challenge.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lain-etal-2022-ku">
<titleInfo>
<title>KU_ED at SocialDisNER: Extracting Disease Mentions in Tweets Written in Spanish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Lain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wonjin</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyunjae</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaewoo</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ian</namePart>
<namePart type="family">Simpson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system developed for the Social Media Mining for Health (SMM4H) 2022 SocialDisNER task. We used several types of pre-trained language models, which are trained on Spanish biomedical literature or Spanish Tweets. We showed the difference in performance depending on the quality of the tokenization as well as introducing silver standard annotations when training the model. Our model obtained a strict F1 of 80.3% on the test set, which is an improvement of +12.8% F1 (24.6 std) over the average results across all submissions to the SocialDisNER challenge.</abstract>
<identifier type="citekey">lain-etal-2022-ku</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.23</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>78</start>
<end>80</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KU_ED at SocialDisNER: Extracting Disease Mentions in Tweets Written in Spanish
%A Lain, Antoine
%A Yoon, Wonjin
%A Kim, Hyunjae
%A Kang, Jaewoo
%A Simpson, Ian
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F lain-etal-2022-ku
%X This paper describes our system developed for the Social Media Mining for Health (SMM4H) 2022 SocialDisNER task. We used several types of pre-trained language models, which are trained on Spanish biomedical literature or Spanish Tweets. We showed the difference in performance depending on the quality of the tokenization as well as introducing silver standard annotations when training the model. Our model obtained a strict F1 of 80.3% on the test set, which is an improvement of +12.8% F1 (24.6 std) over the average results across all submissions to the SocialDisNER challenge.
%U https://aclanthology.org/2022.smm4h-1.23
%P 78-80
Markdown (Informal)
[KU_ED at SocialDisNER: Extracting Disease Mentions in Tweets Written in Spanish](https://aclanthology.org/2022.smm4h-1.23) (Lain et al., SMM4H 2022)
ACL