@inproceedings{claeser-kent-2022-fraunhofer,
title = "Fraunhofer {FKIE} @ {SMM}4{H} 2022: System Description for Shared Tasks 2, 4 and 9",
author = "Claeser, Daniel and
Kent, Samantha",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.29",
pages = "103--107",
abstract = "We present our results for the shared tasks 2, 4 and 9 at the SMM4H Workshop at COLING 2022 achieved by succesfully fine-tuning pre-trained language models to the downstream tasks. We identify the occurence of code-switching in the test data for task 2 as a possible source of considerable performance degradation on the test set scores. We successfully exploit structural linguistic similarities in the datasets of tasks 4 and 9 for training on joined datasets, scoring first in task 9 and on par with SOTA in task 4.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="claeser-kent-2022-fraunhofer">
<titleInfo>
<title>Fraunhofer FKIE @ SMM4H 2022: System Description for Shared Tasks 2, 4 and 9</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Claeser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samantha</namePart>
<namePart type="family">Kent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our results for the shared tasks 2, 4 and 9 at the SMM4H Workshop at COLING 2022 achieved by succesfully fine-tuning pre-trained language models to the downstream tasks. We identify the occurence of code-switching in the test data for task 2 as a possible source of considerable performance degradation on the test set scores. We successfully exploit structural linguistic similarities in the datasets of tasks 4 and 9 for training on joined datasets, scoring first in task 9 and on par with SOTA in task 4.</abstract>
<identifier type="citekey">claeser-kent-2022-fraunhofer</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.29</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>103</start>
<end>107</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fraunhofer FKIE @ SMM4H 2022: System Description for Shared Tasks 2, 4 and 9
%A Claeser, Daniel
%A Kent, Samantha
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F claeser-kent-2022-fraunhofer
%X We present our results for the shared tasks 2, 4 and 9 at the SMM4H Workshop at COLING 2022 achieved by succesfully fine-tuning pre-trained language models to the downstream tasks. We identify the occurence of code-switching in the test data for task 2 as a possible source of considerable performance degradation on the test set scores. We successfully exploit structural linguistic similarities in the datasets of tasks 4 and 9 for training on joined datasets, scoring first in task 9 and on par with SOTA in task 4.
%U https://aclanthology.org/2022.smm4h-1.29
%P 103-107
Markdown (Informal)
[Fraunhofer FKIE @ SMM4H 2022: System Description for Shared Tasks 2, 4 and 9](https://aclanthology.org/2022.smm4h-1.29) (Claeser & Kent, SMM4H 2022)
ACL