@inproceedings{ortega-martin-etal-2022-dezzai,
title = "dezzai@{SMM}4{H}{'}22: Tasks 5 {\&} 10 - Hybrid models everywhere",
author = "Ortega-Mart{\'\i}n, Miguel and
Ardoiz, Alfonso and
Garcia, Oscar and
{\'A}lvarez, Jorge and
Alonso, Adri{\'a}n",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.3",
pages = "7--10",
abstract = "This paper presents our approaches to SMM4H{'}22 task 5 - Classification of tweets of self-reported COVID-19 symptoms in Spanish, and task 10 - Detection of disease mentions in tweets {--} SocialDisNER (in Spanish). We have presented hybrid systems that combine Deep Learning techniques with linguistic rules and medical ontologies, which have allowed us to achieve outstanding results in both tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ortega-martin-etal-2022-dezzai">
<titleInfo>
<title>dezzai@SMM4H’22: Tasks 5 & 10 - Hybrid models everywhere</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Ortega-Martín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alfonso</namePart>
<namePart type="family">Ardoiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oscar</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Álvarez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrián</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our approaches to SMM4H’22 task 5 - Classification of tweets of self-reported COVID-19 symptoms in Spanish, and task 10 - Detection of disease mentions in tweets – SocialDisNER (in Spanish). We have presented hybrid systems that combine Deep Learning techniques with linguistic rules and medical ontologies, which have allowed us to achieve outstanding results in both tasks.</abstract>
<identifier type="citekey">ortega-martin-etal-2022-dezzai</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.3</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>7</start>
<end>10</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T dezzai@SMM4H’22: Tasks 5 & 10 - Hybrid models everywhere
%A Ortega-Martín, Miguel
%A Ardoiz, Alfonso
%A Garcia, Oscar
%A Álvarez, Jorge
%A Alonso, Adrián
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F ortega-martin-etal-2022-dezzai
%X This paper presents our approaches to SMM4H’22 task 5 - Classification of tweets of self-reported COVID-19 symptoms in Spanish, and task 10 - Detection of disease mentions in tweets – SocialDisNER (in Spanish). We have presented hybrid systems that combine Deep Learning techniques with linguistic rules and medical ontologies, which have allowed us to achieve outstanding results in both tasks.
%U https://aclanthology.org/2022.smm4h-1.3
%P 7-10
Markdown (Informal)
[dezzai@SMM4H’22: Tasks 5 & 10 - Hybrid models everywhere](https://aclanthology.org/2022.smm4h-1.3) (Ortega-Martín et al., SMM4H 2022)
ACL
- Miguel Ortega-Martín, Alfonso Ardoiz, Oscar Garcia, Jorge Álvarez, and Adrián Alonso. 2022. dezzai@SMM4H’22: Tasks 5 & 10 - Hybrid models everywhere. In Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task, pages 7–10, Gyeongju, Republic of Korea. Association for Computational Linguistics.