@inproceedings{liu-etal-2022-air,
title = "{AIR}-{JPMC}@{SMM}4{H}{'}22: {BERT} + Ensembling = Too Cool: Using Multiple {BERT} Models Together for Various {COVID}-19 Tweet Identification Tasks",
author = "Liu, Leung Wai and
Gupta, Akshat and
Obitayo, Saheed and
Liu, Xiaomo and
Shah, Sameena",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.44",
pages = "163--167",
abstract = "This paper presents my submission for Tasks 1 and 2 for the Social Media Mining of Health (SMM4H) 2022 Shared Tasks competition. I first describe the background behind each of these tasks, followed by the descriptions of the various subtasks of Tasks 1 and 2, then present the methodology. Through model ensembling, this methodology was able to achieve higher results than the mean and median of the competition for the classification tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2022-air">
<titleInfo>
<title>AIR-JPMC@SMM4H’22: BERT + Ensembling = Too Cool: Using Multiple BERT Models Together for Various COVID-19 Tweet Identification Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leung</namePart>
<namePart type="given">Wai</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akshat</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saheed</namePart>
<namePart type="family">Obitayo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaomo</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameena</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents my submission for Tasks 1 and 2 for the Social Media Mining of Health (SMM4H) 2022 Shared Tasks competition. I first describe the background behind each of these tasks, followed by the descriptions of the various subtasks of Tasks 1 and 2, then present the methodology. Through model ensembling, this methodology was able to achieve higher results than the mean and median of the competition for the classification tasks.</abstract>
<identifier type="citekey">liu-etal-2022-air</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.44</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>163</start>
<end>167</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AIR-JPMC@SMM4H’22: BERT + Ensembling = Too Cool: Using Multiple BERT Models Together for Various COVID-19 Tweet Identification Tasks
%A Liu, Leung Wai
%A Gupta, Akshat
%A Obitayo, Saheed
%A Liu, Xiaomo
%A Shah, Sameena
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F liu-etal-2022-air
%X This paper presents my submission for Tasks 1 and 2 for the Social Media Mining of Health (SMM4H) 2022 Shared Tasks competition. I first describe the background behind each of these tasks, followed by the descriptions of the various subtasks of Tasks 1 and 2, then present the methodology. Through model ensembling, this methodology was able to achieve higher results than the mean and median of the competition for the classification tasks.
%U https://aclanthology.org/2022.smm4h-1.44
%P 163-167
Markdown (Informal)
[AIR-JPMC@SMM4H’22: BERT + Ensembling = Too Cool: Using Multiple BERT Models Together for Various COVID-19 Tweet Identification Tasks](https://aclanthology.org/2022.smm4h-1.44) (Liu et al., SMM4H 2022)
ACL