@inproceedings{xherija-choi-2022-complx,
title = "{C}omp{L}x@{SMM}4{H}{'}22: In-domain pretrained language models for detection of adverse drug reaction mentions in {E}nglish tweets",
author = "Xherija, Orest and
Choi, Hojoon",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.47",
pages = "176--181",
abstract = "The paper describes the system that team CompLx developed for sub-task 1a of the Social Media Mining for Health 2022 ({\#}SMM4H) Shared Task. We finetune a RoBERTa model, a pretrained, transformer-based language model, on a provided dataset to classify English tweets for mentions of Adverse Drug Reactions (ADRs), i.e. negative side effects related to medication intake. With only a simple finetuning, our approach achieves competitive results, significantly outperforming the average score across submitted systems. We make the model checkpoints and code publicly available. We also create a web application to provide a user-friendly, readily accessible interface for anyone interested in exploring the model{'}s capabilities.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xherija-choi-2022-complx">
<titleInfo>
<title>CompLx@SMM4H’22: In-domain pretrained language models for detection of adverse drug reaction mentions in English tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Orest</namePart>
<namePart type="family">Xherija</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hojoon</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes the system that team CompLx developed for sub-task 1a of the Social Media Mining for Health 2022 (#SMM4H) Shared Task. We finetune a RoBERTa model, a pretrained, transformer-based language model, on a provided dataset to classify English tweets for mentions of Adverse Drug Reactions (ADRs), i.e. negative side effects related to medication intake. With only a simple finetuning, our approach achieves competitive results, significantly outperforming the average score across submitted systems. We make the model checkpoints and code publicly available. We also create a web application to provide a user-friendly, readily accessible interface for anyone interested in exploring the model’s capabilities.</abstract>
<identifier type="citekey">xherija-choi-2022-complx</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.47</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>176</start>
<end>181</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CompLx@SMM4H’22: In-domain pretrained language models for detection of adverse drug reaction mentions in English tweets
%A Xherija, Orest
%A Choi, Hojoon
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F xherija-choi-2022-complx
%X The paper describes the system that team CompLx developed for sub-task 1a of the Social Media Mining for Health 2022 (#SMM4H) Shared Task. We finetune a RoBERTa model, a pretrained, transformer-based language model, on a provided dataset to classify English tweets for mentions of Adverse Drug Reactions (ADRs), i.e. negative side effects related to medication intake. With only a simple finetuning, our approach achieves competitive results, significantly outperforming the average score across submitted systems. We make the model checkpoints and code publicly available. We also create a web application to provide a user-friendly, readily accessible interface for anyone interested in exploring the model’s capabilities.
%U https://aclanthology.org/2022.smm4h-1.47
%P 176-181
Markdown (Informal)
[CompLx@SMM4H’22: In-domain pretrained language models for detection of adverse drug reaction mentions in English tweets](https://aclanthology.org/2022.smm4h-1.47) (Xherija & Choi, SMM4H 2022)
ACL