@inproceedings{zanwar-etal-2022-mantis,
title = "{MANTIS} at {SMM}4{H}{'}2022: Pre-Trained Language Models Meet a Suite of Psycholinguistic Features for the Detection of Self-Reported Chronic Stress",
author = "Zanwar, Sourabh and
Wiechmann, Daniel and
Qiao, Yu and
Kerz, Elma",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.5",
pages = "16--18",
abstract = "This paper describes our submission to Social Media Mining for Health (SMM4H) 2022 Shared Task 8, aimed at detecting self-reported chronic stress on Twitter. Our approach leverages a pre-trained transformer model (RoBERTa) in combination with a Bidirectional Long Short-Term Memory (BiLSTM) network trained on a diverse set of psycholinguistic features. We handle the class imbalance issue in the training dataset by augmenting it by another dataset used for stress classification in social media.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zanwar-etal-2022-mantis">
<titleInfo>
<title>MANTIS at SMM4H’2022: Pre-Trained Language Models Meet a Suite of Psycholinguistic Features for the Detection of Self-Reported Chronic Stress</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sourabh</namePart>
<namePart type="family">Zanwar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Wiechmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elma</namePart>
<namePart type="family">Kerz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission to Social Media Mining for Health (SMM4H) 2022 Shared Task 8, aimed at detecting self-reported chronic stress on Twitter. Our approach leverages a pre-trained transformer model (RoBERTa) in combination with a Bidirectional Long Short-Term Memory (BiLSTM) network trained on a diverse set of psycholinguistic features. We handle the class imbalance issue in the training dataset by augmenting it by another dataset used for stress classification in social media.</abstract>
<identifier type="citekey">zanwar-etal-2022-mantis</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.5</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>16</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MANTIS at SMM4H’2022: Pre-Trained Language Models Meet a Suite of Psycholinguistic Features for the Detection of Self-Reported Chronic Stress
%A Zanwar, Sourabh
%A Wiechmann, Daniel
%A Qiao, Yu
%A Kerz, Elma
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F zanwar-etal-2022-mantis
%X This paper describes our submission to Social Media Mining for Health (SMM4H) 2022 Shared Task 8, aimed at detecting self-reported chronic stress on Twitter. Our approach leverages a pre-trained transformer model (RoBERTa) in combination with a Bidirectional Long Short-Term Memory (BiLSTM) network trained on a diverse set of psycholinguistic features. We handle the class imbalance issue in the training dataset by augmenting it by another dataset used for stress classification in social media.
%U https://aclanthology.org/2022.smm4h-1.5
%P 16-18
Markdown (Informal)
[MANTIS at SMM4H’2022: Pre-Trained Language Models Meet a Suite of Psycholinguistic Features for the Detection of Self-Reported Chronic Stress](https://aclanthology.org/2022.smm4h-1.5) (Zanwar et al., SMM4H 2022)
ACL