@inproceedings{chan-etal-2022-leveraging,
title = "Leveraging Social Media as a Source for Clinical Guidelines: A Demarcation of Experiential Knowledge",
author = {Chan, Jia-Zhen Michelle and
Kunneman, Florian and
Morante, Roser and
L{\"o}sch, Lea and
Zuiderent-Jerak, Teun},
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy",
booktitle = "Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop {\&} Shared Task",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.smm4h-1.51",
pages = "203--208",
abstract = "In this paper we present a procedure to extract posts that contain experiential knowledge from Facebook discussions in Dutch, using automated filtering, manual annotations and machine learning. We define guidelines to annotate experiential knowledge and test them on a subset of the data. After several rounds of (re-)annotations, we come to an inter-annotator agreement of K=0.69, which reflects the difficulty of the task. We subsequently discuss inclusion and exclusion criteria to cope with the diversity of manifestations of experiential knowledge relevant to guideline development.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chan-etal-2022-leveraging">
<titleInfo>
<title>Leveraging Social Media as a Source for Clinical Guidelines: A Demarcation of Experiential Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jia-Zhen</namePart>
<namePart type="given">Michelle</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Florian</namePart>
<namePart type="family">Kunneman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roser</namePart>
<namePart type="family">Morante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lea</namePart>
<namePart type="family">Lösch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teun</namePart>
<namePart type="family">Zuiderent-Jerak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present a procedure to extract posts that contain experiential knowledge from Facebook discussions in Dutch, using automated filtering, manual annotations and machine learning. We define guidelines to annotate experiential knowledge and test them on a subset of the data. After several rounds of (re-)annotations, we come to an inter-annotator agreement of K=0.69, which reflects the difficulty of the task. We subsequently discuss inclusion and exclusion criteria to cope with the diversity of manifestations of experiential knowledge relevant to guideline development.</abstract>
<identifier type="citekey">chan-etal-2022-leveraging</identifier>
<location>
<url>https://aclanthology.org/2022.smm4h-1.51</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>203</start>
<end>208</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging Social Media as a Source for Clinical Guidelines: A Demarcation of Experiential Knowledge
%A Chan, Jia-Zhen Michelle
%A Kunneman, Florian
%A Morante, Roser
%A Lösch, Lea
%A Zuiderent-Jerak, Teun
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%S Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F chan-etal-2022-leveraging
%X In this paper we present a procedure to extract posts that contain experiential knowledge from Facebook discussions in Dutch, using automated filtering, manual annotations and machine learning. We define guidelines to annotate experiential knowledge and test them on a subset of the data. After several rounds of (re-)annotations, we come to an inter-annotator agreement of K=0.69, which reflects the difficulty of the task. We subsequently discuss inclusion and exclusion criteria to cope with the diversity of manifestations of experiential knowledge relevant to guideline development.
%U https://aclanthology.org/2022.smm4h-1.51
%P 203-208
Markdown (Informal)
[Leveraging Social Media as a Source for Clinical Guidelines: A Demarcation of Experiential Knowledge](https://aclanthology.org/2022.smm4h-1.51) (Chan et al., SMM4H 2022)
ACL