When Polysemy Matters: Modeling Semantic Categorization with Word Embeddings

Elizabeth Soper, Jean-pierre Koenig


Abstract
Recent work using word embeddings to model semantic categorization have indicated that static models outperform the more recent contextual class of models (Majewska et al, 2021). In this paper, we consider polysemy as a possible confounding factor, comparing sense-level embeddings with previously studied static embeddings on both coarse- and fine-grained categorization tasks. We find that the effect of polysemy depends on how one defines semantic categorization; while sense-level embeddings dramatically outperform static embeddings in predicting coarse-grained categories derived from a word sorting task, they perform approximately equally in predicting fine-grained categories derived from context-free similarity judgments. Our findings highlight the different processes underlying human behavior on different types of semantic tasks.
Anthology ID:
2022.starsem-1.10
Volume:
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics
Month:
July
Year:
2022
Address:
Seattle, Washington
Editors:
Vivi Nastase, Ellie Pavlick, Mohammad Taher Pilehvar, Jose Camacho-Collados, Alessandro Raganato
Venue:
*SEM
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
123–131
Language:
URL:
https://aclanthology.org/2022.starsem-1.10
DOI:
10.18653/v1/2022.starsem-1.10
Bibkey:
Cite (ACL):
Elizabeth Soper and Jean-pierre Koenig. 2022. When Polysemy Matters: Modeling Semantic Categorization with Word Embeddings. In Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 123–131, Seattle, Washington. Association for Computational Linguistics.
Cite (Informal):
When Polysemy Matters: Modeling Semantic Categorization with Word Embeddings (Soper & Koenig, *SEM 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.starsem-1.10.pdf