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Abstract

We present the first fully trainable semantic
parser for English, German, Italian, and Dutch
discourse representation structures (DRSs)
that is competitive in accuracy with recent
sequence-to-sequence models and at the same
time compositional in the sense that the out-
put maps each token to one of a finite set of
meaning fragments, and the meaning of the ut-
terance is a function of the meanings of its parts.
We argue that this property makes the system
more transparent and more useful for human-
in-the-loop annotation. We achieve this simply
by casting DRS parsing as a sequence label-
ing task, where tokens are labeled with both
fragments (lists of abstracted clauses with rela-
tive referent indices indicating unification) and
symbols like word senses or names. We give
a comprehensive error analysis that highlights
areas for future work.1

1 Introduction

Semantic parsing is the task of mapping natural-
language sentences to symbolic representations
of their meaning. Although most current natural
language understanding (NLU) applications are
handled by end-to-end systems that solve specific
tasks (such as machine translation, conversation, or
sentiment analysis) without intermediate symbolic
meaning representations, semantic parsing contin-
ues to attract research interest for good reasons:
first, next-generation NLU systems may become
more accurate and certainly more easily explain-
able and debuggable by combining symbolic rep-
resentations with end-to-end techniques. Second,
symbolic meaning representations are amenable to
symbolic reasoning, which may be instrumental
in enabling, e.g., digital assistants to solve more
complex tasks. Third, better and more transparent
computational models of text-meaning mapping

1Our system is available at https://github.com/
ShenMinX/DRS-parser

can be a useful tool for semantics, i.e., to under-
stand how natural-language semantics works.

In recent years, most work on annotating natural-
language text with comprehensive, broad-coverage
meaning representations has been performed in
three frameworks: Abstract Meaning Represen-
tations (Banarescu et al., 2013), Universal Cogni-
tive Conceptual Annotation (Abend and Rappoport,
2013), and Discourse Representation Structures
(Abzianidze et al., 2017). Accurate parsers exist
for all three (e.g., Lindemann et al., 2020; Oepen
et al., 2020; van Noord et al., 2020). Each for-
malism has its specific strength: AMRs go very
far in abstracting away from surface variation in
how a certain meaning is expressed, UCCA has
a clear mapping between form and meaning and
a modular architecture, and DRSs ground natural
language meaning in first-order logic, by explicitly
representing the scopes of negation, quantification,
disjunction, etc. In this paper, we focus on parsing
to DRSs.

State-of-the-art DRS parsers follow the encoder-
decoder paradigm pioneered for machine transla-
tion by Sutskever et al. (2014): the input sequence
is encoded by a neural network into a vector, then
another network predicts the output sequence (or
in this case: output DRS) from that vector. Rather
than improve upon the accuracy of such parsers on
standard benchmarks, our aim in this paper is to
achieve some of their benefits (ability to learn from
examples, high accuracy, low computational com-
plexity, robustness to atypical input, utilization of
off-the-shelf language models, conceptual simplic-
ity) while also having a degree of compositionality,
traditionally a property of grammar-based systems.
Specifically, our system learns to assign each to-
ken of an utterance one of a finite set of abstract
meaning fragments that are deterministically com-
bined to give the meaning of the whole utterance.
While our system may not fulfill all criteria of com-
positionality according to some definitions, it can
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t1 e1 b2

time.n.08(t1)
t1 ≺ now

trick.v.01(e1)
Patient(e1, x1)
Time(e1, t1)

x1 b1

Name(x1, “tom”)
male.n.02(x1)

Figure 1: DRS for the sentence “Tom was tricked” in
box notation

arguably reap some of compositionality’s benefits,
which make it suitable for use in semi-automatic
annotation workflows. We discuss this further in
Section 5.

Previous work has introduced trainable composi-
tional semantic parsers for AMR (Lindemann et al.,
2020) and DRS (Evang, 2019; Bladier et al., 2021).
In this paper, we improve upon the latter parser
using a novel way to encode anchored DRSs as
sequences, and thereby cast DRS parsing simply
as a sequence labeling task (§2). We use a stan-
dard transformer-based model to learn this task,
followed by post-processing to ensure well-formed
DRSs (§3). We use training data from the Parallel
Meaning Bank (§4). The accuracy of our model
approaches the state of the art with the additional
benefit of being, to a degree, compositional (§5).
We give an error analysis in §6 and conclude in §7.

2 Encoding Anchored DRSs as Sequences

Gómez-Rodríguez and Vilares (2018); Strzyz et al.
(2019); Vilares et al. (2020) encode syntax trees as
token labels to cast syntactic parsing as a sequence
labeling task. We apply a similar method to DRS
parsing. We will use a simplified example from the
Parallel Meaning Bank (PMB; Abzianidze et al.,
2017) for exposition.

Figure 1 shows the DRS for the sentence “Tom
was tricked” in box notation. It consists of two
sub-DRSs or boxes, b1 and b2. b1 introduces an
entity named “Tom” x1. b2 introduces a “tricking”
event e1 (an event of type trick.v.01 in the
WordNet ontology, Fellbaum (2000)) whose Patient
role is filled by x1. Because “Tom” is a definite NP,
it introduces a presupposition: b2 presupposes b1.
The event is in the past, i.e., its Time role is filled
by a time entity (an entity of type time.n.08 in
WordNet) t1 which precedes the time "now".

Figure 2 shows the same DRS in clause nota-
tion. Here, a DRS is a set of clauses. A clause
consists of a box label indicating which box the
clause is part of, a predicate such as a word sense,

b1 REF x1 % Tom [0...3]
b1 Name x1 "tom" % Tom [0...3]
b1 PRESUPPOSITION b2 % Tom [0..3]
b1 male "n.02" x1 % Tom [0..3]
b2 REF t1 % was [4...7]
b2 TPR t1 "now" % was [4...7]
b2 Time e1 t1 % was [4...7]
b2 time "n.08" t1 % was [4...7]
b2 REF e1 % tricked [8...15]
b2 Patient e1 x1 % tricked [8...15]
b1 trick "v.01" e1 % tricked [8...15]

% . [15...16]

Figure 2: DRS for the sentence “Tom was tricked” in
clause notation

a semantic role, or a discourse relation, and one or
two arguments, which may be referents such as e1
or x1, or constants such as "hearer", "now",
or "+".

Our sequence-labeling method assumes training
DRSs to be anchored, that is, each clause must
be aligned to one (or more) input token. Thanks
to the grammar-based annotation method of the
PMB, this is approximately the case, as can be seen
in the clause representation. We thus encode the
DRS as a sequence of labels, one for each token,
where each label consists of zero or more clauses,
as row (1) of Figure 3 shows. We call these labels
fragments. Although labels are complex because
they can consist of multiple clauses, our sequence
labeling model treats them as atomic.

In prediction tasks, it is important that label pre-
dictions generalize to unseen data. In contrast to
this, the numeric part of referent labels in clauses
are not meaningful and depend on the number of
referents that were introduced before in the same
sentence, so they would generalize poorly. Thus,
in row (2), we change the referents to be relative,
inspired by Bos (2021): referents that have not
occurred before get the index 0 and referents that
have occurred get a negative index, indicating how
long ago the same referent last occurred (count-
ing back among all occurrences of referents of the
same type).

To further reduce proliferation of different frag-
ments, we also experiment with factorizing frag-
ments into fragments proper and integration labels.
In this factorization, the first backreference of ev-
ery type in a fragment always has index -1, and a
separately predicted integration label specifies how
much to subtract from that to get to the actual index.
This can be seen in row (3), where the first b label
for the word was has index -1 instead of -2, and
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(0) Tom was tricked

(1)
b1 REF x1
b1 Name x1 "tom"
b1 PRESUPPOSITION b2
b1 male "n.02" x1

b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b2 REF e1
b2 Patient e1 x1
b2 trick "v.01" e1

(2)
b0 REF x0
b-1 Name x-1 "tom"
b-1 PRESUPPOSITION b0
b-2 male "n.02" x-1

b-2 REF t0
b-1 TPR t-1 "now"
b-1 Time e-1 t-1
b-1 time "n.08" t-1

b-1 REF e-1
b-1 Patient e-1 x-1
b-1 trick "v.01" e-1

(3)
b0 REF x0
b-1 Name x-1 "DUMMY"
b-1 PRESUPPOSITION b0
b-2 male "n.02" x-1

b-1 REF t0
b-1 TPR t-1 "now"
b-1 Time e-1 t-1
b-1 time "n.08" t-1

b-1 REF e-1
b-1 Patient e-1 x-1
b-1 DUMMY "v.00" e-1

[b0 e0 n0 p0 s0 t0 x0] [b-1 e0 n0 p0 s0 t0 x0] [b0 e0 n0 p0 s0 t0 x0]

tom - trick "v.01"

Figure 3: Sequence encoding of anchored DRSs. From top to bottom: (0) the sentence, (1) basic sequence encoding,
(2) relative sequence encoding, (3) factored sequence encoding with separate integration and symbol labels.

the integration label [b-1 e0 n0 p0 s0 t0
x0] indicates that 1 should be subtracted from that
to get to the actual relative index. This allows was
in our example to have the same fragment as in
Someone was tricked, where the subject does not
introduce a presupposition and the actual index is
thus -1 rather than -2 because there is one less
box intervening.2

Another important factorization concerns large-
class and open-class symbols, viz. (content-word)
word senses, names, numbers, and time expres-
sions. We follow Evang (2019) in replacing these
with dummy expressions in the fragments and pre-
dicting them separately, as explained below in
Section 3. We also follow them in heuristically
changing the representation of first and second per-
son pronouns, which introduce "speaker" and
"hearer" constants instead of discourse refer-
ents in the PMB, for more consistent representation
of predicates.

3 Parsing Model

Our parsing model consists of a standard trans-
former sequence labeling model, followed by post-
processing to assemble the predicted labels into a
DRS.

2As pointed out by a reviewer, an even better factorization
of fragments could potentially be achieved by indexing not
with respect to linear position but with respect to the syntactic
head word. This would require introducing a dependency
parsing component. We leave this for future work.

Figure 4: Neural model
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Sequence Labeling Transformer Model Our
model is schematically depicted in Figure 4. It
takes an input sequence of tokens X = w1 . . . wn

and produces aligned output sequences Ys, Yf , Yi,
which are word senses, fragments, and integration
labels. Our model simply consists of a pre-trained
BERT model (Devlin et al., 2019) and three lin-
ear classifiers. Each classifier can be seen as a
sub-system of the semantic parser that produces
one of the three labels (word sense, fragment, and
integration label).

Each input token must further be tokenized into
wordpieces before they can be fed into the BERT
model. To obtain a single representation for a token
that consists of N wordpieces and thus produces
N embedding vectors, we experiment with two
commonly used strategies: taking only the first
wordpiece, or averaging the embeddings of all N
wordpieces.

Post-processing After the neural model predicts
a fragment and a word sense for each token, we as-
semble these predictions into a complete clause list
by choosing unique new names for discourse refer-
ents with index 0 and unifying other discourse ref-
erents with them according to their relative indices.
We also replace DUMMY strings in clauses by the
predicted word senses and by symbols for names,
cardinalities, and date/time expressions, which are
predicted from the tokens by a rule-based system
similar to that of Evang (2019). For example, for
the proper name Tom it predicts the symbol "tom",
for the numeral two it predicts "2", and for the
time expression five o’clock, it predicts "17:00".
Special clauses like b1 "speaker" x1 and b1
"hearer" x1 are removed and the correspond-
ing referent (x1 in the example) replaced by the
symbols "speaker" and "hearer". Finally,
we use a set of postprocessing rules similar to that
of van Noord et al. (2020) to ensure the validity of
the resulting DRS: if there is a loop in the subor-
dination relation among boxes, an arbitrary box in
the loop is chosen, and all its clauses are removed
to break the loop (cf. Figure 9 in the Appendix).
Furthermore, a REF clause is introduced for each
referent that is now used but not introduced by a
REF clause, in the box where it first occurs. Finally,
connectedness of all boxes is ensured by introduc-
ing CONTINUATION relations between top-level
unconnected boxes.

gold silver bronze total

English 8 403 97 958 146 371 252 372
German 1 979 5 250 121 111 128 340
Italian 1 062 2 772 64 305 68 139
Dutch 1 012 1 301 21 550 23 863

Table 1: Numbers of DRSs in the PMB 3.0.0

4 Experimental Setup

Data and Splits We train and evaluate our mod-
els on the Parallel Meaning Bank (PMB; Abzian-
idze et al., 2017), version 3.0.0. This sembank
contains sentences annotated with anchored DRSs
in four languages (English, German, Italian, Dutch)
and three annotation statuses: gold DRSs have been
fully corrected by human annotators, silver ones
have been partially corrected, and bronze ones are
the unchecked outputs of rule-based pre-annotation.
Table 1 gives an overview. We use the standard split
into training, development, and test data suggested
in the PMB release. Note that for Italian and Dutch,
the number of gold DRSs is very small and they
are only used for development and testing, leaving
only bronze and silver data for training.

PLMs and Hyperparameters The backbone of
our PyTorch (Paszke et al., 2019) implementation
is the Transformer and WordpieceTokenizer classes
offered by Hugging Face (Wolf et al., 2019).
We use pre-trained BERT models provided on
huggingface.co: bert-base-cased,
dbmz/bert-base-german-cased,
dbmz/bert-base-italian-cased,
and Geotrend/BERT-base-nl-cased
(Abdaoui et al., 2020), keeping their default
configuration. The only hyperparameters we
choose ourselves are the batch size (24), the
learning rate, and the number of epochs. We used
the Adam optimizer to train all the parameters
in our model including the pretrained BERT. To
ensure stability and avoid overfitting, we used a
linear scheduler with no warm-up step, which
gradually reduces the learning rate from 0.0015 to
0 for each training iteration. During preliminary
experiments on the development set, we found that
training loss barely changed after five epochs.

BERT has 12 layers, each of which has a
768-dimensional output embedding per wordpiece.
There is some mixed information in the literature as
to which layer’s output is most suitable for seman-

216

huggingface.co


Parameters 114 M
Training time 12 mins
Word senses 5 864
Fragments w/ integration labels 1 864
Fragments w/o integration labels 2 694
Integration labels 100

Table 2: Initial model statistics for English

tic parsing tasks. According to Chronis and Erk
(2020), the middle layer is most transferable for
downstream semantic tasks, while van Noord et al.
(2020) claim that the last layer provides the best
results for their DRS parser, so we experimented
with both.

Evaluation We evaluate the performance of our
parser using Counter (van Noord et al., 2018a), an
extension of the Smatch evaluation metric (Cai and
Knight, 2013). Counter approximates an optimal
mapping between the referents in the gold DRS and
the predicted DRS using hill-climbing, then out-
puts recall, precision, and f-score for the predicted
clauses compared to the gold clauses.

5 Results and Discussion

Integration Labels We trained an initial model
on the English gold training data, for which we
give some statistics in Table 2. As can be seen,
factoring fragments leads to 100 distinct integra-
tion labels and reduces the number of distinct frag-
ments from 2 694 to 1 864. We found however
that the factorization does not necessarily help the
model, as the integration labels are extremely un-
balanced. In fact, 80.1% of tokens in the training
data have the “empty” integration label [b0 e0
n0 p0 s0 t0 x0]. In a direct comparison, we
found that factoring out integration labels improves
the prediction accuracy on the fragments by 3%.
However, since prediction of integration labels is
not perfect, the overall Counter f-score is not im-
proved significantly (the difference in f-score is
smaller than 0.01%). We nevertheless conduct all
further experiments with integration labels enabled.

Word Senses The next label we take a closer
look at is the word senses. Table 3 shows the f-
score of our model’s sense predictions, as reported
by Counter, overall and broken down into nominal,
verbal, adjectival, and adverbial word senses. The
accuracy is much higher for nouns than for verbs,

all concepts 0.7584
nominal 0.8217
verbal 0.6173
adjectival 0.5861
adverbs 0.5977

Table 3: Word sense f-scores in the initial model for
English

Layer 7 7 12
Wordpiece initial mean mean

sense acc. 0.8663 0.8670 0.8648
fragment acc. 0.8630 0.8659 0.8651
integration acc. 0.9461 0.9475 0.9436
Counter f1 0.7873 0.7882 0.7836

Table 4: Choice of BERT output layer and wordpiece
embeddings

which reflects the fact that the former are less poly-
semous than the latter according to WordNet statis-
tics.3 Another possible reason is that many nominal
senses do not stem from predictions of the word
sense layer but from “function” senses that appear
in many fragments, such as time "n.08" in the
fragment for was in Figure 3. The lower scores
for adjectival and adverbial can be explained with
data sparsity, for there only 1 593 adjectives and
210 adverbs in the gold data. For comparison, the
number of nouns and verbs are 20 192 and 6 108.

Choice of BERT Output Layer and Wordpiece
Embeddings We were interested in how the
choice of BERT output layers and word piece
embeddings impacts performance of our model.
Hence, we did the following experiments with
our base model, shown in Table 4. First, we use
BERT’s middle (7th) output layer, using the em-
bedding of the initial word piece for each word
as input to the classifiers. Second, we used the
middle layer, but with the mean vector of all word
pieces (this is the method we used in all previous
experiments). Third, we used the mean value of
the final (12th) BERT output layer, which helped
van Noord et al. (2020) build their best model, yet
according to Chronis and Erk (2020) contains too
much “information residual”, hence is more suit-
able for syntactical tasks. To minimize the effect of

3https://wordnet.princeton.edu/
documentation/wnstats7wn, retrieved 2022-03-
11
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g g+s g+s+b

# senses 5 864 42 147 60 740
# fragments 1 864 20 170 27 949
# integrations 100 2 901 4 121
Counter f1 0.7896 0.8554 0.8640

Table 5: Training on silver and bronze data

Model dev test

Bladier et al. (2021) 81.4 81.4
van Noord et al. (2018b) 84.3 84.9
van Noord et al. (2019) 86.8 87.7
van Noord et al. (2020) (base) 87.6 88.5
van Noord et al. (2020) (best) 88.4 89.3
Pro Boxer 88.2 88.9
this work 86.4 88.4

Table 6: Comparison of our English parser with prior
art (Counter f-scores on PMB 3.0.0)

random errors, we did five trials on each of these
embedding approaches and averaged the results.
Although the differences are rather small, the mean
vector of the middle layer seems to provide the best
scores across the board. Therefore, we stuck to this
setting for subsequent experiments.

Bronze and Silver Training Apart from the
small gold set whose quality is guaranteed by hu-
man annotators, PMB 3.0.0 also contains silver
and bronze data with partial or no manual checking
of the annotations. Their lower quality is compen-
sated for by quantity. Liu et al. (2019) report a large
improvement for their DRS parser when first train-
ing on the bronze and silver data, then “fine-tuning”
on gold data. Since we are using a Transformer
model like them, we expected this technique could
also boost our parser’s performance. Thus, we
tested our model with 5 epochs training on silver
and bronze followed by 5 epochs on gold. The
results are shown in Table 5. They confirm that
more data means better results even when the data
is not perfect. Although the bigger training set also
increases the number of classes for all three labels
more than 10-fold, the model seems to handle it
just fine. The only downside is the longer train-
ing time: as the silver and bronze sets for English
are, respectively, 21 and 25 times larger than the
gold one, the time consumption jumps from a few
minutes to more than 10 hours.

Final Model for English We compare our final
best model for English to previous work, shown in
Table 6. Note that Bladier et al. (2021) is an im-
proved version of Evang (2019)’s transition-based
DRS parser. The models presented by van Noord
et al. (2018b, 2019, 2020) are all character-wise
sequence-to-sequence models. No results on the
same data are available for the encoder-decoder
model of Liu et al. (2019); however, on PMB 2.2.0
its difference in Counter f-score with van Noord
et al. (2019) was less than 1% on the dev and test
set. The “base” model of van Noord et al. (2020) is
the character-wise sequence-to-sequence parser of
van Noord et al. (2019) with the addition of BERT
embeddings, and their “best” model encodes the
character embedding and the BERT embedding
separately before feeding their concatenated vector
into the decoder, which achieved state-of-the-art
results. Worth noting is their claim that it’s best to
keep BERT parameters “frozen”, which we did not
find to be the case for our model: in preliminary
experimentation, finetuning BERT parameters with
our model outperformed a corresponding frozen
model by 20% in Counter f-score.

We also compare with the semi-rule-based sys-
tem used for pre-annotating the Parallel Meaning
Bank (Abzianidze et al., 2017). Van Noord et al.
(2020) call this system “Pro Boxer”. In a sense,
Pro Boxer is closest in approach to ours because it
makes use of neural taggers for making token-level
tagging predictions. It differs from ours and all
other systems however in that it is not fully train-
able from examples; the translation from tags to
DRSs is done via hand-crafted rules. Moreover, it
relies on a CCG parser that creates explicit syntac-
tic representation which is perhaps more complex-
ity than needed. As van Noord et al. also point
out, the comparison with Pro Boxer is not quite
fair because it is the system that produced the PMB
pre-annotations and thus profits from anchoring
bias.

The results in Table 6 show that our best model
beats all available previous scores on the English
PMB 3.0.0 test set except for Pro Boxer and van
Noord et al. (2020) and is also very competitive
on the dev set. Its difference with the state-of-the-
art model on the test set is within 1%. Compared
with the best previous fully trainable compositional
model in Bladier et al. (2021), our model improves
performance by a large margin.
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en-dev en-test de-dev de-test it-dev it-test nl-dev nl-test

van Noord et al. (2020) 88.4 89.3 82.4 82.0 80.0 80.5 71.8 71.2
our system 86.4 88.4 79.2 78.3 79.5 80.4 72.5 72.1

Table 7: Comparison of our German, Dutch, and Italian models with prior art (Counter f-scores on PMB 3.0.0)

Results for German, Italian, and Dutch Al-
though most DRS parsers to date have only been
evaluated on English, the PMB also contains data
in German, Italian, and Dutch. We trained our best
model on the German (gold, silver, bronze), Italian
(silver, bronze), and Dutch (silver, bronze) data and
compared the results with the current state of the
art in van Noord et al. (2020), shown in Table 7.
The performance of both models is aligned with
the amount of data available for each language, and
also the proportion of manually corrected (gold)
data. Another source of variation (and possible
reason for the large gap in accuracy between the
two parsers for German) is the choice of pretrained
BERT model. For consistency, we only used the
cased models that are available in the Hugging Face
library, and if possible from the same source.

Compositionality and Its Benefits Is our seman-
tic parser compositional? Bender et al. (2015)
provide a definition of compositionality in mean-
ing systems, which we summarize as follows: (1)
there is a finite set of atomic word-meaning pair-
ings, (2) there is a finite number of rules com-
bining constituent-meaning pairings into larger
constituent-meaning pairings, and any non-atomic
constituent-meaning pairing is a function of the
constituent-meaning pairings from which it is cre-
ated and of the rule that creates it, (3) mean-
ing representations are not changed destructively.
They argue that compositional aspects of mean-
ing such as predicate-argument structure should be
processed by compositional systems, whereas non-
compositional aspects such as anaphora or word
senses should be handled by different mechanisms.
Our parser largely follows these recommendations:
ad (1), the fragments that represent abstract word
meanings are drawn from a finite set, learned from
the training data, while non-compositional word
senses, names, etc. are handled by separate mecha-
nisms. Ad (2), our system does away with the no-
tion of constituent by not using syntactic structure,
but it is trivial to express the mechanism that com-
bines the word meanings into an utterance mean-
ing in terms of a single rule that iteratively com-

bines adjacent words into larger structures, fulfill-
ing this criterion as well. Ad (3), our combining
rule amounts to unifying discourse referents which
is perhaps not strictly non-destructive, as it involves
renaming them. However, unification can also be
expressed in terms of adding variable bindings or
combining graphs, so this criterion should be con-
sidered fulfilled too. Of course, the post-processing
heuristics that are occasionally needed to obtain
valid DRSs do not fit into a compositional frame-
work. Furthermore, we do not currently have any
dedicated mechanisms to handle partially composi-
tional or non-compositional layers of meaning such
as scope or anaphora.

Why care about compositionality in semantic
parsing? If the goal of semantic parsing is not
merely to automatically obtain a representation of
the meaning of an utterance but also to understand
why the parser produced that answer, i.e., an ex-
plainable and transparent system, compositionality
can help. In particular, in the output of our parser,
every token is mapped to one of a finite number of
meaning fragments (unlike a sequence-to-sequence
system where a single token can in principle give
rise to an unbounded number of output symbols),
every clause belongs to one of these fragments (un-
like a sequence-to-sequence system where the out-
put is not usually anchored), and there is a straight-
forward rule that combines fragments into utter-
ance meanings (unlike sequence-to-sequence sys-
tems where the interactions between tokens are
opaque). This type of transparency is especially
important in human-in-the-loop annotation, where
parsers produce an initial annotation and annotators
correct them. To do this efficiently and consistenly,
annotators need to pinpoint where an error arises,
and word-meaning pairings with a finite number
of meanings seem a good handle on that. Ben-
der et al. (2015) make a similar argument about
grammar-based sembanking, pointing out the con-
sistency, comprehensiveness, and scalability that
compositionality afford.

The fact that the accuracy of our compositional
DRS parser now almost reaches that of the best
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Phenomenon with without

NP coordination (2 conjuncts) 85.6 86.1
NP coordination (3 conjuncts) 54.1 87.5
Temporal expression 82.5 86.6
Cardinality 83.9 86.7
Named entity 86.1 86.7
Universal quantification 77.6 86.8
Presupposition 87.5 82.4
Rhetorical relation 84.1 86.5

Table 8: DRS clauses anchored to the conjunction and in
the phrase Lungs, heart, veins, arteries, and capillaries

Table 9: Average f-scores for DRSs with and without
certain phenomena

...
b1 Sub x1 x2 % and [30...33]
b1 Sub x1 x3 % and [30...33]
b1 Sub x1 x4 % and [30...33]
b1 Sub x1 x5 % and [30...33]
b1 Sub x1 x6 % and [30...33]
...

Figure 5: DRS clauses anchored to the conjunction
and in the phrase Lungs, heart, veins, arteries, and
capillaries

sequence-to-sequence ones is a big step ahead to-
wards transparent DRS parsing. It is also worth not-
ing that our sequence encoding scheme is equally
applicable to incremental parsers, which potentailly
afford a greater degree of psycholinguistic plausi-
bility. In addition, the multi-task architecture of our
approach is modular and allows for arbitrary addi-
tional sequence labeling tasks and factorizations.

6 Error Analysis

We were interested in which semantic phenomena
present particular challenges to our parser and thus
performed an error analysis of the output of our best
model on the English development data, shown in
Table 9. Each of the listed phenomena is identified
by the presence of a particular type of clause in the
gold DRS, such as a Sub relation for coordination,
a Quantity relation for quantities, etc. For each
phenomenon, we give the f-score for sentences
with it vs. sentences without it.

While NP coordination with two conjuncts
seems to be handled well, with three conjuncts,
accuracy drops dramatically. This can partially be
explained by poor generalization of conjunction
fragments across different numbers of conjuncts,

see, e.g., Figure 5. A realignment step similar to
the one we use for first and second person pronouns
could help here. Temporal expressions, cardinali-
ties, and named entities all involve the prediction
of open-class strings independently of the neural
model. Considering that these strings typically only
affect a single clause, the underperformance of our
parser on sentences involving them is not small,
thus improving the predictions—perhaps replacing
rules with specialized neural transcoders—could be
a worthwhile area for future work. Universal quan-
tification (expressed using the CONSEQUENCE re-
lation in DRSs) also correlates with significant dif-
ficulties, perhaps due to the diversity of lexical
triggers (one, everybody, both, everything, all, al-
ways...) and associated fragments. Rhetorical rela-
tions present a difficulty because they are often not
aligned to a token, therefore not seen in training
by our parser. Presupposition on the other hand is
correlated with higher scores, presumably because
the vast majority of sentences contains at least one
definite expression.

To gain a better understanding of common error
types, we did an exploratory manual analysis, ran-
domly sampling 100 DRSs produced by our best
model on the English development set. Thanks to
the compositional model structure, we could easily
replicate the PMB-style word-clause alignment in
the output, which makes these analyses much eas-
ier. The examples we refer to can be found in the
Appendix.

In the sample, the most common errors we found
were incorrect word senses, for which 36% of the
sample DRSs had at least one instance. The second
is semantic roles and discourse relations (30%). De-
spite our intention to separate them into two differ-
ent sub-tasks, in our sample, these two error types
often co-occur (cf. Appendix, Figure 6). In fact, in
our sample, we could not find a single case where
the predicted word sense of a verb and the predicted
semantic roles are not compatible with each other.
We hypothesize that correlations between both are
learned well by the underlying BERT model, which
informs both the fragment classifier and the word
sense classifier. In a sense, word sense errors could
be expected to be much more frequent than se-
mantic role errors, because word senses form a
larger class than verbal fragments. It could be that
our model tends to produce internally “consistent”
meanings (with matching senses and roles) even at
the price of predicting incorrect roles, for which it
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is penalized, since Counter does not reward con-
sistency but only correctness. We leave a closer
investigation of this hypothesis to future work.

Compared to verbs, noun fragments have less
variation, thus we generally observe fewer errors
with them. However, there is a noun-related error
that consistently occurs in our sample, viz. failure
to recognize demonyms as such and assign them
the corresponding analysis, which involves a pre-
supposed country (cf. Appendix, Figure 7).

Our parser also consistently fails to recognize
generic you as opposed to deictic you (cf. Ap-
pendix, Figure 8), which points to the importance
of discourse context for understanding the (speaker)
meaning of even a single word, and perhaps to
something that all current DRS parsers lack: an
explicit distinction between sentence meaning and
speaker meaning (cf. Bender et al., 2015).

Besides the very large class of word senses, there
is also the completely open classes of symbols:
names, cardinalities, and times. Our parser predicts
them from the corresponding tokens using rule-
based heuristics, which we have only implemented
for English for now. Simply copying the token of-
ten gives the correct symbol, which is partly why
we only saw a 1% difference for them in the previ-
ous evaluation and why other languages still have
acceptable f-scores (the other reason being that
Counter arguably underpenalizes incorrect sym-
bols). Of course, things can also go wrong (cf.
Appendix, Figure 7).

Finally, we look at fragment predictions with
incorrect discourse referent indices, which lead to
incorrectly unified discourse referents in the output.
The tendency in our sample seems to be that things
here go right most of the time, but when they go
wrong, they go very wrong, leading to DRSs that
are not just incorrect but invalid and can thus not
be scored by Counter. One way for a DRS to be in-
valid is to have a loop in its subordination relation,
e.g., when two boxes presuppose each other. The
way our repair heuristics fix this is to completely
delete one of the boxes, and then fix unintroduced
referents by introducing new REF clauses, and fix
a nonconnected subordination relation by introduc-
ing CONTINUATION relations between boxes (cf.
Appendix, Figure 9). Although a bit crude and
drastic, these fixing heuristics seem to hurt f-score
less than one might expect, for they mainly affect
DRSs that were quite wrong to begin with.

7 Conclusions

We have presented the first fully trainable DRS
parser that is both competitive with the state of
the art and compositional. Unlike sequence-to-
sequence models it provides an explicit mapping
between tokens and clauses, and fixed fragments
ensure consistent analyses. Unlike traditional
pipelines, it does not make use of explicit syntactic
representations or λ-expressions but uses a simple
sequence factorization, and wraps up much of the
complexity in a general-purpose BERT model. We
argue that these characteristics make our model
especially suitable for interactive annotation with
humans in the loop, but is also good enough for
other applications. Beyond producing more and
better data, our error analysis suggests that the next
frontier in DRS parsing will involve better model-
ing of discourse context, and perhaps an explicit
separation of sentence meaning and speaker mean-
ing.

Acknowledgments

We would like to thank the three anonymous re-
viewers for insightful comments. We also thank
Laura Kallmeyer for her support. The second au-
thor’s work on this paper was carried out as part of
the research project TreeGraSP, funded by a Con-
solidator Grant of the European Research Council
(ERC).

References
Amine Abdaoui, Camille Pradel, and Grégoire Sigel.

2020. Load what you need: Smaller versions of
mutililingual BERT. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 119–123, Online. Association for
Computational Linguistics.

Omri Abend and Ari Rappoport. 2013. UCCA: A
semantics-based grammatical annotation scheme. In
Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013) – Long Pa-
pers, pages 1–12, Potsdam, Germany. Association
for Computational Linguistics.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang, Hes-
sel Haagsma, Rik van Noord, Pierre Ludmann, Duc-
Duy Nguyen, and Johan Bos. 2017. The Parallel
Meaning Bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

221

https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://doi.org/10.18653/v1/2020.sustainlp-1.16
https://aclanthology.org/W13-0101
https://aclanthology.org/W13-0101
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039
https://aclanthology.org/E17-2039


Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Emily M. Bender, Dan Flickinger, Stephan Oepen,
Woodley Packard, and Ann Copestake. 2015. Layers
of interpretation: On grammar and compositionality.
In Proceedings of the 11th International Conference
on Computational Semantics, pages 239–249, Lon-
don, UK. Association for Computational Linguistics.

Tatiana Bladier, Gosse Minnema, Rik van Noord, and
Kilian Evang. 2021. Improving DRS parsing with
separately predicted semantic roles. In Proceedings
of the Workshop on Computing Semantics with Types,
Frames and Related Structures.

Johan Bos. 2021. Variable-free discourse representa-
tion structures. https://semanticsarchive.
net/Archive/jQzMzJlY/, accessed 2022-02-
25.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Gabriella Chronis and Katrin Erk. 2020. When is a
bishop not like a rook? when it’s like a rabbi! multi-
prototype BERT embeddings for estimating semantic
relationships. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning,
pages 227–244, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kilian Evang. 2019. Transition-based DRS parsing
using stack-LSTMs. In Proceedings of the IWCS
Shared Task on Semantic Parsing, Gothenburg, Swe-
den. Association for Computational Linguistics.

Christiane D. Fellbaum. 2000. Wordnet: an electronic
lexical database. Language, 76:706.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1314–1324,
Brussels, Belgium. Association for Computational
Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929–3951, On-
line. Association for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2019. Discourse representation parsing for sentences
and documents. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6248–6262, Florence, Italy. Associa-
tion for Computational Linguistics.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The second shared task on cross-
framework and cross-lingual meaning representa-
tion parsing. In Proceedings of the CoNLL 2020
Shared Task: Cross-Framework Meaning Represen-
tation Parsing, pages 1–22, Online. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717–723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018a. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018b. Exploring neural methods for
parsing discourse representation structures. Transac-
tions of the Association for Computational Linguis-
tics, 6:619–633.

Rik van Noord, Antonio Toral, and Johan Bos. 2019.
Linguistic information in neural semantic parsing
with multiple encoders. In Proceedings of the 13th In-
ternational Conference on Computational Semantics

222

https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/W15-0128
https://aclanthology.org/W15-0128
https://semanticsarchive.net/Archive/jQzMzJlY/
https://semanticsarchive.net/Archive/jQzMzJlY/
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://doi.org/10.18653/v1/2020.conll-1.17
https://doi.org/10.18653/v1/2020.conll-1.17
https://doi.org/10.18653/v1/2020.conll-1.17
https://doi.org/10.18653/v1/2020.conll-1.17
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W19-1202
https://doi.org/10.18653/v1/W19-1202
https://doi.org/10.18653/v1/D18-1162
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/2020.emnlp-main.323
https://doi.org/10.18653/v1/P19-1629
https://doi.org/10.18653/v1/P19-1629
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/L18-1267
https://aclanthology.org/L18-1267
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.18653/v1/W19-0504
https://doi.org/10.18653/v1/W19-0504


- Short Papers, pages 24–31, Gothenburg, Sweden.
Association for Computational Linguistics.

Rik van Noord, Antonio Toral, and Johan Bos. 2020.
Character-level representations improve DRS-based
semantic parsing even in the age of BERT. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4587–4603, Online. Association for Computa-
tional Linguistics.

David Vilares, Michalina Strzyz, Anders Søgaard, and
Carlos Gómez-Rodríguez. 2020. Parsing as pretrain-
ing. pages 9114–9121.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

A Examples from Error Analysis

223

https://doi.org/10.18653/v1/2020.emnlp-main.371
https://doi.org/10.18653/v1/2020.emnlp-main.371
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


Figure 6: Gold and predicted DRS for the sentence “Look out!” Both the word sense and the semantic role were
predicted incorrectly.

Figure 7: Gold and predicted DRS for the sentence “He’s Argentinian”. Our parser failed to choose the correct
fragment and symbol for the demonym “Argentinian”.

Figure 8: Gold and predicted DRS for the sentence “You can buy stamps at any post office”. Our parser did not
recognize “you” as generic as opposed to deictic.
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Figure 9: Gold, predicted, and fixed DRSs for the sentence “Tom is Mary’s stepson”. The initial prediction is
invalid because boxes b3 and b4 presuppose each other. This is fixed by completely deleting b4, which leaves an
unintroduced referent x2 and two unconnected boxes b2 and b3 behind. These errors are fixed, respectively, by
introducing a REF clause for x2 where it first occurs (in b2) and introducing a CONTINUATION relation between
x2 and x3.
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