
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 311 - 322
July 14-15, 2022 ©2022 Association for Computational Linguistics

Unsupervised Reinforcement Adaptation for Class-Imbalanced Text
Classification

Yuexin Wu
University of Memphis
ywu10@memphis.edu

Xiaolei Huang
University of Memphis

xiaolei.huang@memphis.edu

Abstract

Class-imbalance naturally exists when train
and test models in different domains. Unsu-
pervised domain adaptation (UDA) augment
model performance with only accessible anno-
tations from the source domain and unlabeled
data from the target domain. However, exist-
ing state-of-the-art UDA models learn domain-
invariant representations and evaluate primar-
ily on class-balanced data across domains. In
this work, we propose an unsupervised domain
adaptation approach via reinforcement learning
that jointly leverages feature variants and imbal-
anced labels across domains. We experiment
with the text classification task for its easily
accessible datasets and compare the proposed
method with five baselines. Experiments on
three datasets prove that our proposed method
can effectively learn robust domain-invariant
representations and successfully adapt text clas-
sifiers on imbalanced classes over domains.
The code is available at https://github.
com/woqingdoua/ImbalanceClass

1 Introduction

Unsupervised domain adaptation (UDA) is to find a
shared feature space that is predictive across target
and source domains (Ramponi and Plank, 2020).
The shared space, domain-independent feature set,
allows transferring of trained text classifiers from
the source domain to the target domain. Methods
to find the space have two major directions, pivot
feature (Blitzer et al., 2006; Daumé III, 2007; Ziser
and Reichart, 2018; Ben-David et al., 2020a) and
adversarial learning (Ganin and Lempitsky, 2015;
Chen et al., 2020b; Du et al., 2020). The pivot-
based method selects a subset of shared features,
called pivots, which learn important cross-domain
information to represent shared feature space. Ad-
versarial learning approaches the shared feature
space by reducing document features’ capability to
distinguish source and target domains. The com-
mon method to achieve this is Gradient Reversal

Layer (GRL) (Ganin and Lempitsky, 2015) aiming
to reduce domain-specific patterns. However, the
UDA approaches primarily focus on feature shifts
(𝑝(𝑋𝑠𝑜𝑢𝑟𝑐𝑒)! = 𝑃(𝑋𝑡𝑎𝑟𝑔𝑒𝑡 )) while ignore possible
class shifts (𝑝(𝑌𝑠𝑜𝑢𝑟𝑐𝑒)! = 𝑝(𝑌𝑡𝑎𝑟𝑔𝑒𝑡 )) across do-
mains.

Class-imbalance naturally exists in data when
label distributions across domains (Cui et al., 2017;
Cheng et al., 2020) are different. Under the class-
imbalanced scenario, the label distribution is imbal-
anced across domains, and the label distributions in
source and target domains are not the same. Given
the widely used Amazon data (Ni et al., 2019) as an
example, the Book reviews may have more positive
reviews than negative reviews, and the Kitchen may
have a lower ratio of negative reviews. However,
evaluating unsupervised domain adaptation under
the class-imbalanced scenario is under-examined
than the ideal scenario of the class-balanced bench-
mark. A wide evaluation benchmark of UDA for
text classifiers is extracted from the Amazon re-
view (Blitzer et al., 2006). The data has the same
balanced-class distributions for both source and tar-
get domains. Such a well-balanced label distribu-
tion may make existing UDA models inapplicable
to the real-world scenario, where class distributions
can shift across domains.

In this study, we proposed an unsupervised re-
inforcement adaptation model (URAM) for text
classifiers under the UDA setting that only labeled
source data and unlabeled target data are available.
Specifically, we propose a neural mask mechanism
to generate domain-dependent and -independent
feature representations and a reward policy using a
critic value network (Konda and Tsitsiklis, 2000)
(CRN) to learn optimal domain-independent repre-
sentations. The reward policy optimizes the URAM
via three joint reward factors, label, domain, and
domain distance. While the label reward aims to
encourage text classification models on domain-
independent features to predict correct document
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classes, the domain and domain distance rewards
reduce domain variations of domain-dependent fea-
ture representations between source and target do-
mains. We compare our reinforcement adapta-
tion model with five baselines and experiment on
four class-imbalanced data with both binary and
non-binary labels. The results using the F1-score
demonstrate the effectiveness of our reinforcement
learning model that outperforms the baselines by
3.13 on average. The main contributions of this
paper are as follows:

• We propose a reinforcement learning model
for unsupervised domain adaptation that
jointly leverages cross-domain variations and
classification performance.

• We experiment UDA approaches on the class-
imbalanced scenario that label distributions
are different across domains. The class-
imbalanced scenario is under-explored among
the UDA models .

• We conduct an extensive ablation analysis that
demonstrates how the reinforcement model
can coherently combines both pivot and ad-
versarial directions of unsupervised domain
adaptation.

2 Background

This section briefly recaps the concepts of unsuper-
vised domain adaptation (UDA) and reinforcement
learning.

2.1 UDA for Class-Imbalanced Data

UDA assumes a labeled dataset with D𝑆 ={(
𝑥𝑖𝑠, 𝑦

𝑖
𝑠

)}𝑛𝑠
𝑖=1 from source domain and a unlabeled

data D𝑇 =
{
𝑥
𝑗
𝑡

}𝑛𝑡
𝑗=1

from target domain, data distri-

butions of the two domains are different, 𝑝(𝑥𝑠) ≠
𝑝(𝑥𝑡 ), and the two domains share the same number
of unique annotations. UDA is to find a common
feature space aligning source and target domains so
that 𝑓 (𝑝(𝑥𝑠)) ≈ 𝑝(𝑥𝑡 ) However, class-imbalanced
data naturally exist in UDA tasks that may cause
inefficient knowledge transfer (Ramponi and Plank,
2020). We assume both data and labels are not
equally distributed in this work.

2.2 Reinforcement Learning

Actor-Critic (Konda and Tsitsiklis, 2000) is an rein-
forcement learning algorithm that combines Actor

and Critic networks. Critic, a value network (de-
note as 𝑉𝜃𝑐 ), estimates rewards at state 𝑠𝑡 and is
optimized by state difference error as follows

L(𝜃𝑐) =
𝑉𝜃𝑐 (𝑠𝑡 ) − 𝑟 (s𝑡 , 𝑎𝑡 ) −𝑉𝜃𝑐 (s𝑡+1)

2 (1)

where 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is a target reward and tells us the
reward for taking action 𝑎 in state 𝑠. The actor is
a policy function that gives us the probability of
taking action 𝑎 in the state 𝑠. The actor decides
which action should be taken, and the critic eval-
uates how good the action is and how it should
adjust. The learning of the actor (𝜃𝑎) is based on
policy gradient approach as the following

L𝐴(𝜃𝑎) =
∑︁
𝑡

log 𝜋𝜃𝑎 (𝑎𝑡 , 𝑠𝑡 ) 𝐴 (𝑠𝑡 , 𝑎𝑡 ) (2)

, where 𝐴 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 ).
𝛾 is a decay factor that discounts rewards backward
over steps. To encourage the actor to explore more
actions, the algorithm adds an entropy penalty,

L𝑆 (𝜃𝑎) = −
∑︁
𝑎

𝜋𝜃 (𝑎 | 𝑠) log 𝜋𝜃𝑎 (𝑎 | 𝑠) (3)

The overall objective is as following,

L = min{L(𝜃𝑐) − (L𝐴(𝜃𝑎) + L𝑠 (𝜃𝑎))} (4)

3 Unsupervised Reinforcement
Adaptation Model

In this section, we present details of the Unsuper-
vised Reinforcement Adaptation Model (URAM)
in Figure 1. The URAM trains classifiers on the
labeled data from the source domain and unlabeled
data from the target domain. The model contains
three major modules: 1) a base model; 2) adversar-
ial learning; 3) reinforcement learning.

3.1 Based Model
Our based model consists of an encoder and a clas-
sifier. The encoder extracts features from input
documents, and the classifier predicts document
labels. The based model takes a regular in-domain
training method with 𝑛𝑠 labeled samples from the
source domain

min
𝜃𝑒 , 𝜃𝑐𝑙𝑎

𝑛𝑠∑︁
𝑖

(L(𝐶 (𝐸 (𝑥𝑖𝑠, 𝜃𝑒), 𝜃𝑐𝑙𝑎), 𝑦𝑖𝑠) (5)

, where 𝜃𝑒, 𝜃𝑐𝑙𝑎 are the parameters of the en-
coder and classifier respectively. L(·) is the cross-
entropy loss.
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Figure 1: Illustration of URAM learning process. The yellow route is the 𝑅𝑑 prediction progress, measuring by
the confusion of the discriminator for 𝑥𝑚 and 𝐸 (𝑋). The blue route calculates the 𝑅𝑑 by the consistency of the
classifier for 𝑥𝑚 and 𝐸 (𝑋). The overall reward is made by 𝑅𝑑 and 𝑅𝑐. The critic updates parameters by minimizing
the mean square between the ground truth reward (𝑅𝑑 + 𝑅𝑐) and the predictive reward (𝑅𝑐). The mask model learns
from the policy gradient.

3.2 Adversarial Learning
We propose an adversarial learning using a mask
strategy to learn domain-independent representa-
tions, which are transferable across domains. Do-
main adversarial learning (Ganin and Lempitsky,
2015) learns domain-independent features by re-
duce domain predictability of text classifiers, which
is a common adversarial strategy in the UDA (Ram-
poni and Plank, 2020). The domain adversarial
learning deploys a discriminator (𝜃𝑑) to predict
domains by minimizing the classification error:

min
𝜃𝑑

(L(𝐷 (𝐸 (𝑋𝑠), 𝜃𝑑), 𝟙) +L(𝐷 (𝐸 (𝑋𝑡 ), 𝜃𝑑), 𝟘)).
(6)

However, the uncertainty is a major issue that can
lead to uncontrollable learning process (Long et al.,
2018; Ramponi and Plank, 2020) and easily fail to
yield domain-independent representations.

Therefore, we propose a mask model to extract
domain-independent features. Intuitively, if the
discriminator uses the generated features from the
mask model and fails to recognize domains of input
data, then this indicates the features generated by
the mask model are domain-independent. There-
fore, our first goal is to maximize the loss of the
discriminator as the following formulation:

𝑅𝑑 = max
𝜃𝑚

(L(𝐷 (𝑥𝑠𝑚, 𝜃𝑚), 𝜃𝑑), 𝟙)+
L(𝐷 (𝑥𝑡𝑚, 𝜃𝑚), 𝜃𝑑), 𝟘))

(7)

where 𝑥𝑠𝑚 = 𝑀 (𝐸 (𝑋𝑠)) ∗ 𝐸 (𝑋𝑠) and 𝑥𝑡𝑚 =
𝑀 (𝐸 (𝑋𝑡 )) ∗ 𝐸 (𝑋𝑡 ). The mask model generates
domain-independent representations by learning

how to transform domain-dependent features and
capture common knowledge cross domains.

The second objective of the mask model is for
class-imbalanced distributions between source and
target domains. Misclassifications occur when
there is a class distribution discrepancy between
training and test domains. The optimal domain
adaptation is in the second stage of Fig. 2, how-
ever the class-imbalance may lead to misalignment
in the third stage. As shown in the Fig. 2, while
UDA models align feature spaces between source
and target domains, misalignment may happen in
label spaces especially when majority classes are
different across domains. To reduce label distri-
bution discrepancy, we propose an invariable pre-
diction reward to jointly incorporate feature and
label variants. Intuitively, we expect the classifier
can make similar predictions by the original and
masked features while reducing its dependence on
domain-dependent patterns. Therefore, our goal is
to make a consistent prediction between 𝐶 (𝐸 (𝑋))
and𝐶 (𝑀 (𝐸 (𝑋))). We follow the work (Saito et al.,
2018b) and employ L1-distance to measure the rep-
resentation discrepancy loss between 𝐶 (𝐸 (𝑋)) and
𝐶 (𝑀 (𝐸 (𝑋))) as the following:

𝑅𝑐 = 𝑚𝑖𝑛(L𝑑𝑖𝑠 ( |𝐶 (𝑀 (𝐸 (𝑋))) − 𝐶 (𝐸 (𝑋)) |))
(8)

, where 𝑅𝑐 measures cross-domain variations.

3.3 Actor-Critic Learning

To reduce the uncertainty of extracting domain-
independent representations by the mask model,
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Classifier            Target domain         Source domain
Figure 2: Illustration of alignment process for the class-imbalanced data.

we adopt the policy gradient via the actor-critic
algorithm (Konda and Tsitsiklis, 2000) to explore
the optimal solution.

First, we introduce a value estimation network,
critic. The critic helps to estimate an action’s re-
ward by giving a state. Our critic is a 2-layer feed-
forward network 𝑓 with the input of 𝑀 (𝐸 (𝑋)) and
𝐸 (𝑋), the predictive reward 𝑅𝑝 is formulated as
follow:

𝑅𝑝 = 𝑓 (𝑀 (𝐸 (𝑋)) ∗ 𝐸 (𝑋)). (9)

The loss function is the difference between of re-
alistic reward (𝑅𝑑 + 𝑅𝑐) and the predictive reward
(𝑅𝑝) from the critic as the following,

L(𝜃𝑐) =
(
𝑅𝑑 + 𝑅𝑐 − 𝑅𝑝

)2 (10)

The critic is trained with Adam on a mean squared
error L(𝜃𝑐).

The mask model generates a mask matrix M𝑎

and is an actor model by a fully connected neural
network and a sigmoid unit. It accepts inputs from
the encoder and calculates a masked probability
of each features M𝑝. Then we adopt Bernoulli
sampling and obtain a logical matrix M𝑎. The
elements in M𝑎 belongs to {0, 1}. We denote the
output of the mask model as 𝑥𝑚 = M𝑎 ∗𝐸 (𝑥). The
mask model’s training objective is to maximum the
total reward 𝑅𝑑 and 𝑅𝑐 defined in e.q. 7 and e.q. 8

𝐽 (M𝑎 | 𝐸 (𝑋)) =
EM𝑎∼𝜋 (M𝑝 |𝐸 (𝑋)) {𝑅𝑑 − 𝑅𝑐 + 𝑅𝑟𝑒𝑔},

(11)

, where 𝜋 is a policy function and 𝑅𝑟𝑒𝑔 is a regu-
larization term, controlling the number of masked
features. We set 𝑅𝑟𝑒𝑔 = (∑M𝑎). Since the mask
model only make one action to transfer the state
𝑀 (𝐸 (𝑋)) from 𝐸 (𝑋), we do not need to consider
the future reward and the decay factor 𝛾 in e.q. 2
is zero. Thus, we can obtain the following opti-
mization by combining with the e.q. 2 and e.q. 3,

L(𝜃𝑚) = − log 𝜋𝜃𝑚 (𝑎, 𝑠) 𝐴 (𝑠, 𝑎) +
𝜋𝜃𝑚 (𝑎 | 𝑠) log 𝜋𝜃𝑚 (𝑎 | 𝑠) (12)

, where 𝐴(𝑠, 𝑎) = 𝑅𝑑 + 𝑅𝑐 − 𝑅𝑝. We update 𝜃𝑚 by
minimizing L(𝜃𝑚).

Algorithm 1 Optimization Process of Our Model.

Input: The source data 𝐷𝑠 = (𝑋𝑠, 𝑌𝑠) and target
data 𝐷𝑡 = (𝑋𝑡 ), maximum iteration 𝐼;

Output: The network parameter 𝜃𝑒, 𝜃𝑐𝑙𝑎, 𝜃𝑑 , 𝜃𝑚,
𝜃𝑐;

1: for 𝑖 = 1; 𝑖 < 𝐼; 𝑖 + + do
2: Samples a batch from 𝐷𝑠 and 𝐷𝑡 ;
3: Update 𝜃𝑒, 𝜃𝑐𝑙𝑎 via e.q.(5);
4: Update 𝜃𝑑 via e.q.(6)
5: Update 𝜃𝑚, 𝜃𝑐 via section (3.3)
6: end for
7: return 𝜃𝑒, 𝜃𝑐𝑙𝑎, 𝜃𝑑 , 𝜃𝑚, 𝜃𝑐;

3.4 Training Procedure
Our training procedure includes three steps: 1) step
A trains the encoder and classifier as e.q. 5; 2)
step B trains the discriminator by e.q. 6; 3) step
C training the mask model by the reinforcement
learning. We summarize the optimization process
in Algorithm 1.

4 Experiment

4.1 Datasets
We assembled four datasets, three online reviews
and one Twitter data. The reviews are binary labels,
and the Twitter data has 11 unique labels. We
summarize data statistics in Table 2.

Amazon, Yelp, and IMDB Review are standard
data sources for evaluating UDA models (Ramponi
and Plank, 2020). We retrieved the Yelp and IMDB
reviews1 from torchtext and top four product gen-

1https://pytorch.org/text/stable/
datasets.html
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Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
LSTM

DANN 45.00 23.17 83.33 93.55 45.16 61.79
MCD 40.25 23.61 83.85 94.17 48.27 61.54

JUMBOT 46.94 23.26 81.79 93.66 42.57 56.78
ALDA 38.20 23.31 84.14 93.88 42.30 52.46
URAM 47.06 24.00 85.09 94.49 50.58 62.50

BERT
DANN 78.20 23.50 73.23 69.64 54.36 43.44
MCD 79.51 23.39 74.33 69.54 43.67 42.37

JUMBOT 73.74 23.23 80.57 75.00 53.37 43.08
ALDA 77.26 24.42 77.21 70.54 47.01 39.84
URAM 81.93 27.09 86.24 76.97 57.70 45.16

Table 1: Cross-domain performance of UDA models using F1 score. Each UDA model testifies over two popular
neural feature extractor, LSTM and BERT. We list extensive evaluations in the Appendix.

Docs Tokens pos/neg
M-MeToo 4480 13.86 -

M-Davidson 4480 19.13 -
A-Book 2000 25.65 0.65

A-Kitchen 2000 29.73 4.78
Yelp 2000 231.57 0.26

IMDB 2000 146.01 0.67

Table 2: Data statistics summary of Morality and three
review data, Amazon, Yelp and IMDB. We include
multi-label distributions of the Morality data in ap-
pendix, Table 7.

res of Amazon reviews (Ni et al., 2019), including
Books (B), DVDs (D), Electronics (E) and Kitchen
(K). We treat the four Amazon genres, Yelp, and
IMDB as domains. Following the standard bench-
mark (Blitzer et al., 2006) for the UDA evaluations,
we randomly select 2000 samples from each do-
main, while label distributions are not the same
cross domains. We name cross-domain evaluations
by the source-target format. For example, Books-
Kitchen means that Books is the source data and
Kitchen is the target data.

MFTC (Hoover et al., 2020) is a multi-label clas-
sification Twitter data with 35,108 tweets. These
tweets are drawn from seven different discourse
domains with moral sentiment across seven so-
cial movements, including MeToo, Black Lives
Matter (BLM), Sandy, Davidson, Baltimore, All
Lives Matter (ALM), and US Presidential Election
(Election). We treat social movements as domains.
These domains share the same set of 11 moral senti-
ment types: Subversion, Authority, Cheating, Fair-
ness, Harm, Care, Betrayal, Loyalty, Purity, Degra-
dation, Non-moral. The rates of each of the virtues

and vices vary substantially across the domain. For
example, only approximately 2% of the ALM data
were labeled as degradation while approximately
14% of the Sandy data were labeled as degradation.

We conduct an exploratory analysis of domain
shifts in data and labels. The analysis follows
the name format as source-target. We use KL-
divergence of the class distribution to measure
the category-wise distribution and Euclidean dis-
tance to measure the domain-wise distribution. The
domain-wise discrepancy refers to the euclidean
distance of the encoder’s output between the train-
ing and test sets. The category-wise is the KL-
divergence of labels’ distribution between the train-
ing and test sets. We extract feature vectors using
LSTMs trained over the domains. We show cross-
domain discrepancy in Table 3. We can find that
the multi-label Twitter data has more variations in
both domain and label distributions.

4.2 Baselines

We compare our models with four recent methods.

• DANN (Ganin and Lempitsky, 2015) maps
source and target domains to a common sub-
space through shared parameters. This ap-
proach introduces a gradient reversal layer to
confuse domain prediction to improve classi-
fication robustness across domains with the
adversarial train.

• MCD (Saito et al., 2018a) proposes to maxi-
mize the discrepancy between two classifiers’
outputs to detect target samples that are far
from the support of the source. Then, A fea-
ture generator learns to generate target fea-
tures near the support to minimize the discrep-
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Table 3: Summary of domain shifts in data (domain-wise) and label (category-wise) distributions.

discrepancy MeToo-Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
domain-wise 10889 661 15986 11680 1.523 1.692
category-wise 0.1197 0.1933 2.0 × 10−4 1.0 × 10−4 0.044 0.050

ancy.

• JUMBOT (Fatras et al., 2021) proposes a new
formulation of the mini-batch optimal trans-
port strategy coupled with an unbalanced op-
timal transport program to calculate optimal
transport distance.

• ALDA (Chen et al., 2020b) constructs a new
loss function by introducing a confusion ma-
trix. The confusion matrix reduces the gap
and aligns the feature distributions in an ad-
versarial manner.

4.3 Implementation Details

In this study, we evaluate the UDA methods us-
ing two standard neural models as feature extrac-
tors, LSTM (Hochreiter and Schmidhuber, 1997)
and BERT (Devlin et al., 2019). For the LSTM-
based encoder, we use pre-trained word vectors
GloVe (Pennington et al., 2014) by torchtext 2 to
train word embedding. The learning rate is set
to 1 × 10−3 and batch size set to 64. We utilize
a Bidirectional LSTM as our encoder and set the
LSTM hidden number as 256. For the BERT-based
encoder, we load the pre-trained BERT model
(bert-base-uncased) from the transformer
toolkit (Wolf et al., 2020). We set the learning rate
as 1 × 10−5 and batch size as 16.

In all the above experiments, we used Adam
(Kingma and Ba, 2015) to optimize our model and
maximum iteration set to 50 in all experiments. We
run each experiment five times and average F1 as
the final performance.

4.4 Result

Table 4: The domain-wise discrepancy based on domain
adaptation methods.

DANN MCD JUMBOT ALDA URAM
MeToo - Davidson 3.937 5.806 0.072 7.902 0.401
Davidson-MeToo 0.016 10.862 0.121 0.016 0.044
Book-Kitchen 0.950 1.651 0.046 3.922 0.233
Kitchen-Book 0.649 1.749 0.073 2.984 0.196
Yelp-IMDB 3.376 3.029 0.492 8.106 0.586
IMDB-Yelp 2.951 6.184 0.733 31.469 0.665

2https://pytorch.org/text/stable/index.html

In this section, we present model performance
on the cross-domain adaptation task and conduct an
ablation analysis to examine the effects of the two
reward factors, 𝑅𝑑 and 𝑅𝑐. We include extensive
evaluation results in the appendix (Section B).

Overall Performance. The table 1 reports the
overall performance. Our method achieves the best
result in the datasets with a significant discrepancy
both in domain and category. We obtain a sig-
nificant improvement on Amazon datasets, Book-
Kitchen (1.12%-17.7%) and Kitchen-Book (2.62%-
10.68%), respectively. Amazon datasets follow the
traditional assumption that different domains have
significant feature discrepancies but have similar
label distributions. Our improvement on Amazon
datasets verifies our model effectiveness of learn-
ing transferable knowledge. On the other hand, our
method also can release the category discrepancy
problem. As shown in the table 1, our method
outperforms existing methods remarkably on the
MFTC dataset (Metoo-Davidson) with the signif-
icant discrepancy in domain and category since
we can align the distribution both in-text features
and labels. We notice some latest methods fail to
compete with DANN. We infer the reasons behind
this are that some methods do not consider cate-
gory discrepancy. For example, the performance of
ALDA is lower than DANN on Metoo-Davidson
since ALDA tries to align category discrepancy by
narrowing domain discrepancy, which causes nega-
tive knowledge transfer. The other reason is due to
poor robustness. Some methods may ascribe sam-
ples’ feature discrepancy to domain discrepancy,
and aligning these sample’s specific features lead
to a lower distinguished ability among different
samples (e.g., ALDA on Yelp-IMDB). All meth-
ods have similar performance on Davidson-Metoo
since Davidson datasets have an extreme label dis-
tribution. Most samples focus on the same category,
which causes models not to access enough samples
to learn the features in other classes.

Convergence Investigation The convergence
curves of our model and baselines are respectively
depicted in Fig. (3). We conduct a convergence
experiment on Book-Kitchen datasets based on
LSTM to verify the training stability during knowl-
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Figure 3: The convergence comparison between our
model and baselines on Book-Kitchen.

edge transfer. This task focuses on evaluating the
ability to align domain-wise discrepancy since the
feature’s center of Book and Kitchen have a remark-
able difference (up to 15986), but their categories
are similar. Specifically, we observe that our model
significantly outperforms DANN and MCD dur-
ing training. DANN has relatively low stability
since it only aligns different domain features with-
out considering task-specific features. Compared
with ALDA, our model achieves similar stability.
Our model can achieve efficient convergence af-
ter iterating 15 epochs, which proves our model’s
robustness.

Knowledge Transfer. We measure the fea-
ture center distance between the training set in
the source data and the test set in the target data
to evaluate models’ ability to transfer knowledge.
Generally, the domain-wise discrepancy is signifi-
cantly narrowed after applying domain adaptation
methods. Our model achieves relatively signifi-
cant improvements, but there are some exceptions.
For example, ALDA has a lower domain-wise dis-
crepancy on Davidson-MeToo than ours. However,
ALDA’s performance is unsatisfactory, especially
when the datasets have similar domains (e.g., Yelp-
IMDB and IMDB-Yelp). A similar situation also
happens on DANN and MCD. These methods en-
large domain-wise discrepancy when the domains
have similar feature distribution. Compared with
JUMBOT, our model has a slightly large domain-
wise discrepancy. However, our model is more effi-
cient on knowledge transfer when the domain has
huge category-wise discrepancies. For example,
the distance of our model is .0438 on Davidson-
MeToo, while the corresponding figure is .1207 on
JUMBOT.

4.5 Ablation Analysis

In this subsection, we investigate the importance
of different rewards in reinforcement learning by
conducting variant experiments, as shown in the

Table 5.
−𝑅𝑐 means we delete reward 𝑅𝑐 in our 𝑅𝑎𝑑𝑣.

𝑅𝑐 is a unsupervised reward. Instead of aligning
features, 𝑅𝑐 aims to search subspace features, en-
suing the consistent prediction between completed
features 𝐸 (𝑋) and sub-spaced features 𝑀 (𝐸 (𝑋)).
This method is efficient since removing 𝑅𝑐 is signif-
icantly detrimental to cross-domain performance.
Especially, we find that 𝑅𝑐 plays a more critical
role Book-Kitchen and Kitchen-Book tasks by com-
paring the 𝑅𝑑 since removing 𝑅𝑐 lower the perfor-
mance than 𝑅𝑑 .

𝑅𝑑 is proposed to align domain features by fool-
ing the discriminator. −𝑅𝑑 means we do not need
to train the discriminator and 𝑅𝑎𝑑𝑣 only combines
with 𝑅𝑐 and 𝑅𝑟𝑒𝑔. −𝑅𝑑 achieves a better perfor-
mance than our completed model on Book-Kitchen.
We infer the reason behind this is because 𝑅𝑑 only
focuses on feature shift rather than considering the
discrepancy among different classes, which causes
class-specific features to be weakened, and the
model fails to distinguish the boundaries of other
classes. However, removing 𝑅𝑑 decreases the per-
formance in most of the situations, which proves
feature shift is efficient in domain adaptation.

Generally, 𝑅𝑑 and 𝑅𝑐 work together to guide
critical knowledge transfer and removing any one
of them significantly degrades the performance.
Which reward dominates an improvement depends
on the datasets’ property. When the domains have
significant discrepancy both in features and label
distribution, 𝑅𝑑 and 𝑅𝑐 work in an adversarial way
to ensure shifting features as well as keeping class-
specific features.

5 Related work

Unsupervised Domain Adaptation for text clas-
sification has several major types of approaches,
pivot features (Blitzer et al., 2006; Daumé III, 2007;
Ziser and Reichart, 2018; Ben-David et al., 2020b),
instance weighting (Jiang and Zhai, 2007; Wang
et al., 2019; Gong et al., 2020), and domain ad-
versaries (Ganin and Lempitsky, 2015; Qu et al.,
2019; Du et al., 2020). A recent survey (Ramponi
and Plank, 2020) shows that the most widespread
methods for neural UDA are based on the use of
domain adversaries, which reduces the discrepancy
between the source and target distributions by re-
versing gradient updates for domain prediction net-
works. Our study follows the same track to obtain
domain-invariant representations, however, there
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Table 5: Ablation studies of our model on LSTM

Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
−𝑅𝑑 31.97 23.14 86.09 84.15 43.28 61.40
−𝑅𝑐 35.84 23.19 84.51 80.87 43.71 60.87

URAM 47.06 24.00 85.09 94.49 50.58 62.50

are two major differences than the existing UDA for
text classifiers: 1) a mask model to distill domain-
invariant features, 2) and a reinforcement learn-
ing approach to optimize the adversarial network.
While existing UDA models have not explicitly in-
corporate domain shifts in label distributions, our
proposed URAM jointly models domain variants
in both data and label shifts.

Reinforcement Learning With the robustness
in learning sophisticated policies, recent works in-
troduce Reinforcement learning (RL) into the un-
supervised domain adaptation task (Chen et al.,
2020a; Dong et al., 2020; Zhang et al., 2021).
DARL (Chen et al., 2020a) employs deep Q-
learning in partial domain adaptation. The DARL
framework designs a reward for the agent-based on
how relevant the selected source instances are to
the target domain. With the action-value function
optimizer, DARL can automatically select source
instances in the shared classes for circumventing
negative transfer as well as to simultaneously learn
transferable features between domains by reducing
the domain shift. However, DARL does not gener-
alize to unsupervised domain adaptation. Highly
relying on the rich labels in the source domain will
cause failure when insufficient labels are in the tar-
get domain. To address this problem, Zhang et al.
develop a new reward across both source and target
domains. This reward can guide the agent to learn
the best policy and select the closest feature pair for
both domains. However, rarely study has deployed
the reinforcement UDA into the class-imbalanced
text classification. To our best knowledge, we are
the first work introducing RL for the UDA under
the class-imbalanced text classification.

Imbalanced-class Increasing works study the
class-imbalanced domain adaptation (Tan et al.,
2020; Lee et al., 2020; Bose et al., 2021; Li et al.,
2020). COAL (Tan et al., 2020) deals with fea-
ture shift and label shift in a unified way. With
the idea of prototype-based conditional distribution
alignment and class-balanced self-training, COAL
tackles feature shift in the context of label shift.

However, present works only focus on computer
vision, and the imbalanced class domain adaptation
in NLP is unexplored. The other similar works is
category-level feature alignment (Qu et al., 2019;
Luo et al., 2019; Li et al., 2021, 2019; Yang et al.,
2020). These works usually focus on domain shifts
and propose domain-level aligned strategies while
ignoring the local category-level distributions, re-
ducing cross-domain text classifiers’ effectiveness.
A popular strategy for category-level alignment
is aligning the same class features among differ-
ent domains respectively by resorting to pseudo
labels (Dong et al., 2020; Yang et al., 2020).

6 Conclusion

In this study, we have proposed an unsupervised
reinforcement adaptation model (URAM) for the
novel cross-domain adaptation challenge where the
source and target domains are class-imbalanced.
We demonstrate the effectiveness of our reinforce-
ment approach with the other four state-of-art
baselines on the task of text classification. The
URAM learns domain-independent representations
by leveraging three reward factors, label, domain,
and domain distance, which coherently combines
pivot and adversarial approaches in UDA. Exten-
sive experiments and ablation analysis show that
the URAM can obtain robust domain-invariant rep-
resentations and effectively adapt text classifiers
over both domains and imbalanced data.

6.1 Limitation and Future Work

Our work opens several future directions on the
limitations of this study. First, class-imbalanced
data naturally exist in NLP tasks, such as dis-
course inference (Spangher et al., 2021), text gen-
eration (Nishino et al., 2020), and question answer-
ing (Li et al., 2020). Our next step will examine
the effectiveness of our model over the NLP tasks.
Second, we only validate the URAM on English
datasets, and additional multilingual settings will
be verified in future work, such as multilingual text
classification (Schwenk and Li, 2018).
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A Additional Data Statistics

In this section, we summarize additional data and
label statistics in Table 6 and 7.

Docs Tokens pos/neg
D-DVD 2000 30.51 2.52

E-Electronic 2000 27.65 2.26

Table 6: Stats of the Amazon review data. We present
the average number of tokens and the imbalanced-class
ratio.

B Cross-domain Evaluations
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dataset Non-moral Degradation Harm Fairness Subversion Care Cheating Purity Betrayal Authority Loyalty
MeToo 21.40 15,30 6.86 6.30 14.70 3.40 11.00 2.98 5.83 6.93 5.29
BLM 23.59 4.23 19.36 8.58 5.74 5.93 13.84 2.76 2.71 5.40 7.83
Sandy 13.68 1.94 1.69 3.82 9.63 21.30 9.80 1.45 3.12 9.46 8.86

Davidson 92.13 1.34 2.76 0.08 0.14 0.18 1.24 0.10 0.82 0.40 0.82
Baltimore 54.93 0.55 4.86 2.60 5.34 3.26 9.38 0.69 11.18 0.40 6.83

ALM 20.98 3.18 19.15 13.42 2.37 11.88 13.16 2.11 1.04 6.36 6.36
Election 47.70 2.13 9.09 8.66 2.55 6.15 9.59 6.32 1.98 2.61 3.20

Table 7: Label distributions of the multi-class morality dataset (Hoover et al., 2020)

No-adapt MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 47.16 18.09 6.28 35.61 29.58 14.61 16.95
BLM 16.23 76.32 17.22 26.27 25.28 16.16 26.40
Sandy 8.81 14.46 58.50 19.27 7.49 15.68 9.04

Davidson 23.12 31.98 8.09 99.17 66.96 24.93 58.49
Baltimore 23.32 32.42 10.07 99.17 66.54 25.00 59.09

ALM 12.11 17.60 14.27 24.88 25.12 43.71 20.33
Election 23.18 32.59 15.24 99.11 66.57 24.95 58.87

MCD MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 48.14 25.86 13.77 40.25 38.86 22.81 32.41
BLM 16.48 78.42 17.27 29.17 55.27 23.40 34.51
Sandy 24.37 16.68 60.17 15.74 32.50 16.52 12.58

Davidson 23.62 31.99 13.94 99.17 66.96 25.73 58.49
Baltimore 23.12 32.44 14.80 99.17 66.21 24.93 59.09

ALM 16.88 23.37 15.48 37.11 34.33 63.18 25.22
Election 23.12 32.53 14.10 99.17 66.54 24.93 63.91

DANN MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 40.03 17.98 9.74 45.00 20.65 13.69 24.30
BLM 16.33 75.40 15.48 35.68 22.94 17.82 24.39
Sandy 8.37 14.55 56.84 6.78 6.47 14.65 9.34

Davidson 23.17 31.98 8.17 99.17 66.96 24.93 58.49
Baltimore 23.17 32.42 9.82 99.17 66.24 24.95 59.03

ALM 12.63 16.78 14.93 19.18 20.87 60.88 17.26
Election 23.14 32.57 14.23 99.17 66.57 24.93 64.01

JUMBOT MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 43.12 28.32 10.47 46.94 42.33 21.08 36.11
BLM 24.37 72.57 16.02 52.20 48.92 32.18 48.91
Sandy 19.34 33.17 57.60 10.86 41.23 30.86 39.59

Davidson 23.26 32.99 8.35 99.17 66.96 26.64 58.49
Baltimore 23.48 32.66 12.16 99.17 66.18 25.03 59.09

ALM 23.30 39.82 17.04 66.60 61.70 42.01 46.50
Election 23.12 32.49 15.20 99.17 66.42 24.93 60.41

ALDA MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 21.50 25.89 14.17 38.21 1.12 9.84 58.75
BLM 14.82 56.82 13.97 51.90 39.98 16.53 23.39
Sandy 23.36 14.23 34.84 33.81 6.01 22.06 28.03

Davidson 23.31 31.99 26.59 99.17 66.96 32.31 58.49
Baltimore 23.03 31.63 8.77 42.12 65.33 25.50 28.77

ALM 22.43 14.83 5.94 31.16 58.96 38.50 37.35
Election 25.44 39.70 19.16 98.32 66.54 23.17 58.87

URAM MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 45.54 19.34 10.48 47.07 38.14 16.97 34.80
BLM 16.03 79.12 15.86 50.31 30.57 18.56 26.74
Sandy 9.28 14.65 60.44 10.50 10.28 15.28 8.86

Davidson 24.00 32.53 11.59 99.17 66.96 25.02 58.49
Baltimore 23.10 28.57 12.09 98.96 63.52 24.93 53.43

ALM 12.58 16.51 15.70 34.43 27.88 63.11 17.29
Election 22.54 31.92 12.38 99.06 58.10 24.88 65.23

Table 8: Cross-domain performance evaluation over the Morality dataset (Hoover et al., 2020) using F1. Each
subtable presents results of one UDA model.

book-dvd dvd-book book-eletronic eletronic-book kitchen-eletronic eletronic-kitchen dvd-kitchen kitchen-dvd dvd-eletroic eletronic-dvd
DANN 83.16 94.00 86.87 92.15 95.24 91.21 94.24 94.29 94.63 92.57
MCD 84.39 94.34 85.06 93.36 94.08 91.61 94.14 94.99 94.22 92.54

JUMBOT 82.27 91.51 77.34 84.83 92.91 85.58 92.49 94.01 91.64 92.23
ALDA 84.49 93.52 84.14 94.49 93.93 92.39 92.70 94.21 94.00 90.91
URAM 86.56 94.58 87.90 93.51 94.96 92.87 94.81 95.15 95.03 93.02

Table 9: Cross-domain performance evaluation over the Amazon review dataset (Blitzer et al., 2006).
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