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Abstract

Link Prediction is the task of predicting miss-
ing relations between knowledge graph(KG)
entities. Recent work in link prediction mainly
attempted to adapt a model to increase link pre-
diction accuracy by using more layers in neural
network architecture, which heavily rely on
computational resources. This paper proposes
the refinement of knowledge graphs to perform
link prediction operations more accurately us-
ing relatively fast translational models. Transla-
tional link prediction models have significantly
less complexity (faster) than deep learning ap-
proaches but are less accurate; this motivated us
to improve their accuracy. Our method uses the
ontologies of knowledge graphs to add informa-
tion as auxiliary nodes to the graph. Then, these
auxiliary nodes are connected to ordinary nodes
of the KG that contain auxiliary information in
their hierarchy. Our experiments show that our
method can significantly increase the perfor-
mance of translational link prediction methods
in Hit@10, Mean Rank, and Mean Reciprocal
Rank, with the same complexity as translational
models.

1 Introduction

Knowledge graphs (KGs) represent a set of inter-
connected descriptions of entities, including ob-
jects, events, or concepts. These graphs are struc-
tures by which knowledge is captured in the form
of triplets. These triplets consist of three parts:
head, relation, and tail. The relation (edge) deter-
mines the type of relationship between head and
tail nodes.

Despite many efforts to build KGs, they are far
from completeness. One of the developing fields in
completing KGs is link prediction (LP). LP tries to
embed entities and relations in a small continuous
vector space to predict missing links in KGs. In
the last few years, deep learning approaches have
significantly outperformed other methods in LP,
but this accuracy came at the cost of computational

complexity.
Translational LP models, such as TransE (Bor-

des et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), RotatE (Sun et al., 2019b),
and HAKE (Zhang et al., 2020), generally use a
straightforward function over head and relation vec-
tors to predict the tail based on distance (Rossi
et al., 2021) (Wang et al., 2021). One advantage
of translational methods over deep learning tech-
niques is that their score function is considerably
faster (Sun et al., 2019a). Since these models are
less complex and more efficient, we tried to im-
prove only these translational methods in this work.

Ontologies are concepts or properties to describe
an object 1. Wordnet contains hierarchical ontol-
ogy only for its entities. Some work tried to use
ontology components of Wordnet to boost LP mod-
els. For example, GrCluster (Ranganathan et al.,
2020) treated ontology components as paths. It
defined path similarity over entities in Wordnet and
slightly improved LP accuracy. Nonetheless, Gr-
Cluster only improved WNNH and WN18, which
are not standard LP datasets (Dettmers et al., 2018).
Additionally, this work is limited to Wordnet.

Freebase (Bollacker et al., 2008) does not have
any hierarchical path for its entity. On the other
hand, its relations have a path hierarchy to explain
edges. SACN (Shang et al., 2019) exploited ad-
ditional information of FB15k-237 as auxiliary
nodes and created FB15k-237-Attr. Nevertheless,
it added numerous nodes to the KG, which makes
the method for creating FB15k-237-Attr inefficient
for more extensive graphs. Likewise, this method
can only be applied to Freebase.

Translational LP models, such as TransE, Ro-
tatE, or TransD, when trying to learn the relation
between Paris and France, neglect that Paris is a
city and France is a country. We introduce ontol-
ogy components as auxiliary nodes. These aux-
iliary nodes are connected to related entities that

1https:en.wikipedia.orgwikiOntology_(information_science)
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have these components in their hierarchy. For ex-
ample, we added an extra node “country” to KG
and connected it to all the countries in the KG. Our
contributions are as follows:

Firstly, we presented a method for refining KGs
that have ontology. Our approach adds auxiliary
nodes and embeds similar nodes closer in the em-
bedding space, which increases the accuracy of
translational link prediction with the same time
and space complexity of translational models. Sec-
ondly, we used state-of-the-art translational mod-
els to evaluate our method on two FB15k-237 and
WN18RR. The results showed that accuracy in link
prediction was significantly increased on H@10,
MRR, and MR, especially on WN18RR.

2 Related Work

We divided related work into four categories.
First, translational models, such as TransE (Bor-

des et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), HAKE (Zhang et al., 2020),
are distance-based algorithms that use a straight-
forward operation over head and relation (mainly
summation and/or a projection into a secondary
space) to measure the distance to the tail entity.
Some work has been introduced over these fast
translational models to improve their performance
by using hierarchical information. TKRL (Xie
et al., 2016) used components of hierarchical struc-
ture as a transition to transform KG nodes into
secondary space and then performed LP. GrCluster
(Ranganathan et al., 2020) used path similarity over
entities in Wordnet and slightly improved link pre-
diction accuracy. SACN (Shang et al., 2019) pro-
posed FB15k-237_Attr that has external resources
as triplets (new nodes and edges) to improve the
result.

GrCluster could not improve the WN18RR, and
it is limited to KGs that have ontology for their
entities. SACN improved FB15k-237 by creat-
ing FB15k-237_Attr, but it added many nodes and
edges. Nonetheless, the SACN attribute creator
could not be applied to WN18RR. TransC (Lv et al.,
2018) brought similar entities closer in the embed-
ding space and improved LP in YAGO, but experi-
ment results show no improvements on Wordnet or
Freebase. Our work is similar to this category; It
is fast and uses translational models as a core. We
pushed the limitation of TransC to have a better LP
result on Freebase and Wordnet.

Second, mostly deep models adapt an architec-

ture and rarely use anthologies in their main model.
For example, ConvE (Dettmers et al., 2018) used
2D convolution, BERT-ResNet (Lovelace et al.,
2021) and KG-BERT (Yao et al., 2019) employed
BERT, SACN (Shang et al., 2019) utilized WGCN
in its architecture. These models are more accurate
but computationally costly.

Thirdly, KG refinement is a sub-field of KG
enhancement. Refinement can be done by either
adding information to the graph or removing incor-
rect data (Paulheim, 2017). BioKG (Zhao et al.,
2020) worked on medical KGs and has tried to
provide a method for removing the inaccurate in-
formation in these graphs. In this work, like SACN,
we added auxiliary nodes to KGs. These nodes are
extracted from ontology hierarchy levels of nodes
and edges of KGs.

Lastly, some works introduced similarities over
entities or relations. For example, HRS (Zhang
et al., 2018) presented relation-cluster and sub-
relations in the scoring function of translational
models. It created sub-relations and relation-
clusters based on clustering results of TransE rela-
tions; however, it cannot utilize ontology nor im-
prove WN18RR results. For entity similarity, ETE
(Moon et al., 2017) considered that if two entities
are embedded closely in the embedding space, they
are similar and assigned classes to entities based
on closeness. Unlike ETE, our hypothesis is that if
two entities use the same relation type in the graph
or have common elements in their hierarchies, they
are related. We exploited these affiliations (share
hierarchical components) by connecting ordinary
nodes to their auxiliary nodes if a node has the aux-
iliary node in its ontology components.

The main distinctions between our work and re-
lated work are: First, our method works with any
KG with ontology, and it does not matter if it has
the hierarchical ontology for nodes or edges. Sec-
ond, it uses translational models; therefore, it has
high speed and less time to train these models (see
Table 3).

3 KGRefiner

In this work, we propose a method that uses ontol-
ogy as an auxiliary node, which refines the KG and
increases LP accuracy. These auxiliary nodes can
be obtained from the edges of KG or its nodes. For
example, in FB15k-237, we do this refinement by
using hierarchies of relations, and in WN18RR, we
use hierarchies of entities. We add repetitive com-
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ponents of hierarchies to KGs as new (auxiliary)
nodes. Then, we introduce a few new relations to
connect these auxiliary nodes to other KG nodes.

These auxiliary nodes operate like a magnet for
similar entities; They drag similar entities (those
entities that share ontology components) together
in the embedding space. This closeness of similar
entities causes the translational models to prioritize
their search for a specific place in the embedding
space ( e.g., searching between countries when
asked what country’s capital city is Paris, in evalu-
ation). The rest of this section is dedicated to the
proof of this assertion.

Translational link prediction methods, such as
TransE, create transition property in their embed-
dings. For example, in TransE, embeddings are
made as e⃗s + r⃗ ≈ e⃗o. This means the tail entity
should be close to the sum of head and relation in
embedding space. Let us consider n entities share
an ontology component O in their hierarchy. If
we add O to the KG and connect the O to those n
entities, the following optimization will happen in
TransE:

E⃗1 + ⃗RelatedTo ≈ O⃗

E⃗2 + ⃗RelatedTo ≈ O⃗

...

E⃗n + ⃗RelatedTo ≈ O⃗

The loss function minimizes the distance between
two sides of equations:

Loss = ||E⃗1+ ⃗RelatedTo− O⃗||+
||E⃗2+ ⃗RelatedTo− O⃗||+

...

||E⃗n+ ⃗RelatedTo− O⃗||
In the implementation, they are optimized batch-
wised. Also, assume it uses the L1 norm as a dis-
tance measure. Therefore, the batch loss will be:

Loss =

n∑

n=
1

Distance(E⃗i + ⃗RelatedTo, O⃗)

=

n∑

n=
1

Distance(E⃗i, O⃗ − ⃗RelatedTo)

=
n∑

n=
1

||E⃗i, O⃗ − ⃗RelatedTo||1

Since (O⃗ − ⃗RelatedTo) can be considered con-
stant, all E⃗i will be dragged to where (O⃗ −

⃗RelatedTo) is located in the embedding space.
For example, if we connect all KG countries to
an ontology node "country", then all countries will
be embedded closer.

3.1 Refinement of FB15k-237

In FB15k-237, graph relations reflect infor-
mation about entities. For example, in (Paris,
national_capital, France), national_capital has
hierarchy of “entity→ physical_entity→ object→
location→ region→ area→ center→ seat→
capital→ national_capital”. This hierarchy is a
relationship between countries and their capitals,
and nodes on one side of relationships (e.g. left
side of triplet) can be considered similar (e.g.
they are countries). Moreover, higher hierarchy
levels usually have more abstract information
about objects, but the lower ones are more specific.
Therefore, we extracted the last three levels of
hierarchies from each relation in this KG to use
hierarchy components. Then, for each sub-relation
(component), we counted the number of their
repetitions in the KG training section triplets.
Then, we removed those components with less
than 100 repetitions to reduce the number of these
components; the number 100 is arbitrary. Finally,
285 sub-relations remained, and we added them to
the set of entities in this KG (as auxiliary nodes).
We defined two new relations, “RelatedTo” and
“HasAttribute”, to connect these relation-nodes
(auxiliary nodes) to the KG entities. For each
triplet, if the entity is the triplet’s head, we link
it to the auxiliary node by “RelatedTo”, and if
it is the tail of the triplet, we use “HasAttribute”
to establish these connections. For example, to

Algorithm 1: Refinement of FB15k-237

Input (TrainTriplets,Hierarchies,MinRep. =
100)

Hierarchies← LastLevels(Hierarchies, 3)

Hierarchies←
Repetitives(Hierarchies,MinRep)

NewEdges = []
for all (h, r, t) in TrainTriplets do

for all H in Hierarchies do
NewEdges←
NewEdges+ (h,HasAttribute,H)

NewEdges←
NewEdges+ (t, RelatedTo,H)

return TrainTriplets+NewEdges
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refine relation between Paris and France, (Paris,
entity→ physical_entity→ object→ location→
region→ area→ center→ seat→ capital→
national_capital, France), “capital” has repetition
over 100, so the following triplets were added to
the graph:

(France,HasAttribute, capital)

(Paris,RelatedTo, capital)

3.2 Refinement of WN18RR

To refine this graph, we use the hierarchy of enti-
ties. In Freebase, we used relationships, but rela-
tionships do not give us information about entities
in Wordnet. France, for example, has a hierarchy
of “existence → place → region → region →
administrative region → country”. This hierarchy
gives us good information about France. We ex-
tract the last three levels of entities. Among these
levels, we hold those with more than an arbitrary
number of 50 repetitions among entities to reduce
the number of auxiliary nodes. As a result, 207
levels remained. We add these levels as new nodes
to the KG training section and connect them to en-
tities that have these components in their hierarchy
with a new type of connection “HasAttribute”. For
example, France and Iran have a “country” in their
hierarchical structure. Then, the following triplets
were added to the training section of the graph:

(France,HasAttribute, country)

(Iran,HasAttribute, country)

Algorithm 2: Refinement of WN18RR

Input
(TrainTriplets,Hierarchies, Entities,MinRep. =
50)

Hierarchies← LastLevels(Hierarchies, 3)

Hierarchies←
Repetitives(Hierarchies,MinRep)

NewEdges = []
for all e in Entities do

for all H in Hierarchies do
if H IsComponentOf e then

NewEdges← NewEdges+
(e,HasAttribute,H)

return TrainTriplets+NewEdges

3.3 New Relations
We introduce new edge types to connect auxiliary
nodes to the KG to make them distinguishable from
original relation types. Since in WN18RR it is only
one relation is needed, we introduce "HasAttribute"
to say this node has this ontology attribute in its
hierarchy. However, in FB15k-237, only edges
have ontology components. Therefore, we need to
know on which side of the edge an entity is located
(head or tail). Therefore, we introduced two new
relations: "HasAttribute" and "RelatedTo".

4 Exprement

4.1 Datasets
We evaluated our work on popular benchmarks:
FB15k-237 and WN18RR. In addition, we built
two other datasets with KGRefiner: FB15k-237-
Refined and WN18RR-Refined from those datasets.
The details of the datasets are available in appendix
in Table 4.

4.2 Baselines
To demonstrate the effectiveness of our models, we
compare results with the original translational mod-
els TransE (Bordes et al., 2013), TransH (Wang
et al., 2014), RotatE (Sun et al., 2019b), and HAKE
(Zhang et al., 2020), with fair setting (see Section
4.4 and Appendix A). In addition, we used FB15k-
237-Attr (Shang et al., 2019) to compare our work
with other data augmentation methods as base mod-
els plus attributes.

For WN18RR, GrCluster (Ranganathan et al.,
2020) tried to improve link prediction on Word-
net by using hierarchical data using path similarity.
Nevertheless, their report did not show improve-
ment in WN18RR.

4.3 Experimental Results
Table 1 and 2 compares the experimental results of
our KGRefiner plus translational models and with
previously published results. Results in bold font
are the best results in the group, and the underlined
results denote the best results in the column. KGRe-
finer with TransH obtains the highest H@10 and
MRR on FB15k-237, and also KGRefiner with Ro-
tatE reached the best MR and H@10 in WN18RR.

In tables, results of TransE is taken from
(Nguyen et al., 2018), TransH from (Zhang et al.,
2018). For other rows, we used OpenKE (Han
et al., 2018) and original HAKE implementation to
get the scores.
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Baseline H@10 MR MRR
TransE 50.1 3384 22.6

TransE + KGRefiner 53.7 1125 22.2
TransH 42.4 5875 18.6

TransH + KGRefiner 51.4 1534 20.8
HAKE 52.2 4433 40.0

HAKE + KGRefiner 53.8 2125 25.0
RotatE 54.7 4274 47.3

RotatE + KGRefiner 57.0 683 44.8

Table 1: Link prediction results on WN18RR and its
refined version.

Baseline H@10 MR MRR
TransE 45.6 347 29.4

TransE + Attribute 47.6 221 28.8
TransE + KGRefiner 47 203 29.1

HAKE 40.8 282 23.8
HAKE + Attribute 38.4 287 21.7

HAKE + KGRefiner 39.0 267 21.4
RotatE 47.4 185 29.7

RotatE + Attribute 43.8 218 27.3
RotatE + KGRefiner 43.9 226 27.9

TransH 36.6 311 21.1
TransH + Attribute 47.7 237 28.2

TransH + KGRefiner 48.9 221 30.2

Table 2: Link prediction results on FB15k-237 and its
refined version. The "+ Attribute" is the refined version
produced by (Shang et al., 2019)

4.4 Speed of Models

The training time of translational models is much
less than deep learning approaches such as ConvE,
SACN, ConvKB, etc. The complexity of scoring
function and neural network layers in their architec-
ture reduces training speed in deep learning meth-
ods. Table 3 compares the time that each model
needs to be trained for one epoch on FB15k-237.
We ran models on Nvidia K80. For fair comparison
embedding dimension for all models is 200. It can
be observed that the runtime difference between
our best result with KGRefiner (TransH + KGRe-
finer ) and BERT-ResNet (Lovelace et al., 2021)
for a small dataset FB15k-237 is around 9.6×105s.
In other words, our method is 100 times faster. In
terms of their accuracy (H@10, MRR, MR), BERT-
ResNet scores are ( 0.514, 0.346, 186) but TransH
+ KGRefiner are ( 0.489, 0.302, 221). The scores
are slightly lower, but speed is uncomparable.
Apart from that, according to table 4, KGRefiner
adds triplets to the training section of these KGs.
Therefore, it only increases the training time of
WN18RR and FB15k-237 by a factor of 2.65 and
2.02, respectively. It does not increase other mea-
surements’ complexity because it adds few nodes
to the KGs. Consequently, the training cost of the

translational models with KGRefiner is still much
cheaper than deep learning techniques.

Model Time to train Time to train
with KGRefiner

TransE [⊕] 2.8× 102 s 5.6× 102 s
TransH [⊕] 5.2× 102s 1× 103s
TransD [⊕] 5.2× 102s 1× 103s
RotatE [⊕] 5× 102s 1× 103s
HAKE [⊕] 1.5× 104s 3× 104s
ConvE [⊖] 2.7× 105s -
ConvKB [⊖] 4× 104s -
BERT-ResNet [⊖]
(Lovelace et al., 2021) 9.7× 104s -

Table 3: Comparison between translational technique
and deep learning methods in training time on the small-
standard Freebase sub-graph (FB15k-237) . [⊕]: These
models are implemented by OpenKE (Han et al., 2018)
and [⊖] are produced by their original implementations.

5 Conclusion and Future work

In this work, we propose KGRefiner, a KG refine-
ment method that alleviates the limitations of trans-
lational models by capturing additional informa-
tion in knowledge graph hierarchies. We used hi-
erarchy components as auxiliary nodes. Refined
KG comes by connecting these auxiliary nodes to
proper entities. Our empirical results show that our
KGRefiner outperforms other state-of-the-art trans-
lational models and data augmentation methods on
WN18RR. Some models’ performance improved
on FB15k-237 but was not as good as WN18RR.
Furthermore, it is the first augmentation method
that works with both Wordnet and Freebase, while
old methods only perform only on one dataset.

In our work, we had to manually determine the
depth cut of hierarchy and minimum repetition for
ontology components extraction. In future works,
we will automate these two elements, so the model
determines each component. Additionally, KGRe-
finer cannot improve the accuracy of deep learning
methods; therefore, another study is needed to en-
hance deep models by using ontological informa-
tion.
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Dataset FB15k-237 FB15k-237-Refined WN18RR WN18RR-Refined FB15k-237-Attr
Entities 14541 14826 40943 41150 14744
Relations 237 239 11 12 484
Train Edges 272115 550998 86835 230135 350449
Val. Edges 17535 17535 3034 3034 17535
Test Edges 20466 20466 3134 3134 20466

Table 4: Statistics of the experimental datasets. The refined version represents that graph has some auxiliary nodes.
These auxiliary nodes are extracted from entities hierarchy in the original knowledge graph.

A Hyperparameter Settings

We employed the implementation of baselines by
OpenKE (Han et al., 2018), and HAKE (Zhang
et al., 2020) to produce the result.

To have a fair comparison between translational
models, we used an embedding dimension of 200
for all models (to produce the same result as in their
paper, some models need more than 1000 dimen-
sions for entity embedding). Also, we removed
self adversarial negative sampling from TransE,
RotatE, and HAKE and replaced it with typical
negative sampling. Moreover, we tried {200, 500,
1000, 2000} epochs, and we picked the best one
according to MRR on the validation set for final
comparison. Other hyperparameters of the models
are those mentioned in OpenKE and HAKE. Hyper-
parameters for FB15k-237 and FB15k-237-Refined
and also WN18RR and WN18RR-Refined are the
same. Interestingly, HAKE heavily relied on 1000
embedding dimensions to reproduce the result on
its paper.

B Limitations

KGRefiner needs a KG that has ontology for either
its nodes or edges. Therefore, in other developing
KGs, KGRefiner cannot be applied. In addition,
since it brings similar entities closer, this can only
improve distance-based models (translational).
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