@article{goyal-etal-2022-flores,
title = "The {F}lores-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation",
author = "Goyal, Naman and
Gao, Cynthia and
Chaudhary, Vishrav and
Chen, Peng-Jen and
Wenzek, Guillaume and
Ju, Da and
Krishnan, Sanjana and
Ranzato, Marc{'}Aurelio and
Guzm{\'a}n, Francisco and
Fan, Angela",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "10",
year = "2022",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2022.tacl-1.30/",
doi = "10.1162/tacl_a_00474",
pages = "522--538",
abstract = "One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the Flores-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are fully aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="goyal-etal-2022-flores">
<titleInfo>
<title>The Flores-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Naman</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishrav</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peng-Jen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Wenzek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Da</namePart>
<namePart type="family">Ju</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanjana</namePart>
<namePart type="family">Krishnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc’Aurelio</namePart>
<namePart type="family">Ranzato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francisco</namePart>
<namePart type="family">Guzmán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the Flores-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are fully aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.</abstract>
<identifier type="citekey">goyal-etal-2022-flores</identifier>
<identifier type="doi">10.1162/tacl_a_00474</identifier>
<location>
<url>https://aclanthology.org/2022.tacl-1.30/</url>
</location>
<part>
<date>2022</date>
<detail type="volume"><number>10</number></detail>
<extent unit="page">
<start>522</start>
<end>538</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T The Flores-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation
%A Goyal, Naman
%A Gao, Cynthia
%A Chaudhary, Vishrav
%A Chen, Peng-Jen
%A Wenzek, Guillaume
%A Ju, Da
%A Krishnan, Sanjana
%A Ranzato, Marc’Aurelio
%A Guzmán, Francisco
%A Fan, Angela
%J Transactions of the Association for Computational Linguistics
%D 2022
%V 10
%I MIT Press
%C Cambridge, MA
%F goyal-etal-2022-flores
%X One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the Flores-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are fully aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.
%R 10.1162/tacl_a_00474
%U https://aclanthology.org/2022.tacl-1.30/
%U https://doi.org/10.1162/tacl_a_00474
%P 522-538
Markdown (Informal)
[The Flores-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation](https://aclanthology.org/2022.tacl-1.30/) (Goyal et al., TACL 2022)
ACL
- Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krishnan, Marc’Aurelio Ranzato, Francisco Guzmán, and Angela Fan. 2022. The Flores-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation. Transactions of the Association for Computational Linguistics, 10:522–538.