@article{liu-etal-2022-relational,
title = "Relational Memory-Augmented Language Models",
author = "Liu, Qi and
Yogatama, Dani and
Blunsom, Phil",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "10",
year = "2022",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2022.tacl-1.32",
doi = "10.1162/tacl_a_00476",
pages = "555--572",
abstract = "We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model and a knowledge graph for more coherent and logical generation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2022-relational">
<titleInfo>
<title>Relational Memory-Augmented Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dani</namePart>
<namePart type="family">Yogatama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model and a knowledge graph for more coherent and logical generation.</abstract>
<identifier type="citekey">liu-etal-2022-relational</identifier>
<identifier type="doi">10.1162/tacl_a_00476</identifier>
<location>
<url>https://aclanthology.org/2022.tacl-1.32</url>
</location>
<part>
<date>2022</date>
<detail type="volume"><number>10</number></detail>
<extent unit="page">
<start>555</start>
<end>572</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Relational Memory-Augmented Language Models
%A Liu, Qi
%A Yogatama, Dani
%A Blunsom, Phil
%J Transactions of the Association for Computational Linguistics
%D 2022
%V 10
%I MIT Press
%C Cambridge, MA
%F liu-etal-2022-relational
%X We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph. We represent the graph as a collection of relation triples and retrieve relevant relations for a given context to improve text generation. Experiments on WikiText-103, WMT19, and enwik8 English datasets demonstrate that our approach produces a better language model in terms of perplexity and bits per character. We also show that relational memory improves coherence, is complementary to token-based memory, and enables causal interventions. Our model provides a simple yet effective way to combine an autoregressive language model and a knowledge graph for more coherent and logical generation.
%R 10.1162/tacl_a_00476
%U https://aclanthology.org/2022.tacl-1.32
%U https://doi.org/10.1162/tacl_a_00476
%P 555-572
Markdown (Informal)
[Relational Memory-Augmented Language Models](https://aclanthology.org/2022.tacl-1.32) (Liu et al., TACL 2022)
ACL