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Abstract
Abstraction is a core tenet of human cognition
and communication. When composing natural
language instructions, humans naturally evoke
abstraction to convey complex procedures in
an efficient and concise way. Yet, interpret-
ing and grounding abstraction expressed in
NL has not yet been systematically studied in
NLP, with no accepted benchmarks specifi-
cally eliciting abstraction in NL. In this work,
we set the foundation for a systematic study
of processing and grounding abstraction in
NLP. First, we deliver a novel abstraction elic-
itation method and present HEXAGONS, a 2D
instruction-following game. Using HEXAGONS

we collected over 4k naturally occurring
visually-grounded instructions rich with di-
verse types of abstractions. From these data,
we derive an instruction-to-execution task
and assess different types of neural models.
Our results show that contemporary models
and modeling practices are substantially in-
ferior to human performance, and that model
performance is inversely correlated with the
level of abstraction, showing less satisfying
performance on higher levels of abstraction.
These findings are consistent across mod-
els and setups, confirming that abstraction is
a challenging phenomenon deserving further
attention and study in NLP/AI research.

1 Introduction

As human–computer interaction in natural lan-
guage (NL) becomes more and more pervasive
(e.g., via smart devices and chatbots), a cogni-
tive phenomenon known as abstraction, which is
prevalent in human communication and cognition,
is taking a central role in the way users communi-
cate their intentions and needs to artificial agents.

When communicating in NL with a human or an
artificial agent, a human may issue a request for a
single action such as ‘‘send an email’’ or ‘‘set my
alarm’’. However, when engaging with more com-
plex tasks that require multiple actions, humans

often evoke abstraction in order to communicate
their intentions in an economic-yet-precise way.
Examples for evoking abstraction when issuing a
complex request that consists of multiple actions
may be: ‘‘Schedule a group meeting every other
Wednesday until the end of the year, unless there
are holidays.’’ For an autonomous car, an envi-
sioned request might be ‘‘Circle the block looking
for a shady parking spot, park at the first spot
you see. Try this four times, and one more time
allowing for non-shady parking. In no luck, try
the adjacent block.’’ In fact, even the individual
request ‘‘send an email’’ is in itself an abstraction
over a sequence of multiple individual actions
such as: ‘‘open your inbox, click New Mail, select
a recipient,’’ and so forth.

Abstraction is defined by Wing (2011) as ‘‘[let-
ting] one object stand for many. It is used to
capture essential properties common to a set of
objects while hiding irrelevant distinctions among
them’’. In the calendar example, a single utterance
references multiple meetings in multiple days.
Likewise, in the autonomous car example, the
speaker evokes some sort of control structure in
order to iterate a process several times.

Abstraction so construed is both critical and
pervasive in NL. Referring to multiple instances at
once may be done by means of the shape they form,
via a process that iterates them, or via an action/
condition applied to select or manipulate them.
To illustrate this, Figure 1 showcases an example
of a natural language procedure for drawing a
target image (the bottom-right image) on an empty
board. The instructions start with the construction
of an object, a red flower, covering six tiles. Then,
the Instructor prescribes multiple flower patterns
via repeat actions that realize a nested ‘loop’.
Finally, the instructor states the color of the flower
centers via a ‘condition’ (green for red, blue for
yellow). This example goes to show both the
essence and power of abstraction in NL; here,
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Figure 1: Abstraction in the HEXAGONS Game. On
the left are instructions for drawing the target im-
age (bottom-right), paired with their grounding on the
HEXAGONS board on the right. Italics mark expressions
of abstraction as referring to, e.g., objects (a flower),
iterations, and conditions.

merely four NL utterances suffice to prescribe a
complex image over a 180-tiles board.

Despite its importance and widespread use, de-
tecting and grounding abstraction in NL has not
yet been systematically studied in NLP. Previous
studies on grounding instructions target linguis-
tic phenomena as anaphora and ellipsis (Long
et al., 2016), spatial relations (Jayannavar et al.,
2020; Bisk et al., 2016a), and referring expressions
(Haber et al., 2019) but do not specifically elicit
abstraction. In studies on navigation (Anderson
et al., 2018; Chevalier-Boisvert et al., 2018; Misra
et al., 2018) eliciting abstract statements is also
sparse. Instructions often refer to specifics of the
environment rather than abstract phenomena.

In this work we aim to add a new facet to the
study of natural language understanding, that of
interpreting abstraction. We set out to provide a
foundation for systematically studying the phe-
nomenon of processing and grounding diverse

levels of abstraction found in naturally occur-
ring NL utterances. Achieving this goal is far
from trivial. As is standard in NLP, we would
first need to establish an appropriate dataset for
studying this phenomenon. Specifically, we’d like
to collect naturally occurring data that manifest
abstraction. But how can we purposefully re-
quest for the presence of abstraction in naturally-
occurring data?

To overcome this challenge, we develop an ab-
straction elicitation protocol by adopting practices
from STEM education, specifically from Com-
putational Thinking (CT) research (Wing, 2011;
Grover and Pea, 2013). The idea, in a nutshell, is
to develop visual stimuli that evoke, and thus cul-
tivate (and elicit), higher-order thinking, which is
then narrated in NL. We implement the proposed
protocol in a novel HEXAGONS game, a situated
collaborative game where an Instructor provides
instructions that should be grounded and executed
in a virtual world (Long et al., 2016; Bisk et al.,
2016a; Kim et al., 2019; Jayannavar et al., 2020).
In contrast to previous studies, we use practices
from CT research to design visual triggers of ab-
straction. Hence, on the one hand, we implicitly
call for the presence of abstraction in the instruc-
tions, but on the other hand, we provide naturally
elicited abstract instructions from workers not
possessing formal knowledge of what abstraction is.

Using the HEXAGONS game and the task stimuli,
we collected over 4k human instructions mani-
festing a variety of formal abstractions (objects,
control structures, and functions) expressed natu-
rally and intuitively in NL and grounded on the
HEXAGONS board. To showcase how this data may
be used for studying abstraction processing in NL,
we derive an instruction-to-execution task, where
the model needs to ground and execute NL instruc-
tions on the HEXAGONS board. We propose a naı̈ve
rule-based baseline as well as two neural modeling
alternatives—one based on classification, one on
generation—and assess their performance on the
elicited abstraction data.

Our experiments show that, while our models
perform better than the naı̈ve rule-based base-
line, they are substantially inferior to human
performance. Moreover, we show that model per-
formance is inversely correlated with the level
of abstraction, that is, the models execute con-
crete instructions quite well, but perform poorly
on higher-level abstractions. This holds across
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different models, setups, task conditions, amount
and type of training data, and board contexts. We
further observe that the instruction’s history is
another important factor in models’ performance;
the longer the history, the better the performance.

The contribution of this paper is thus manifold.
First, we bring to the fore of NLP research a crit-
ical aspect of human–computer communication,
namely, the ability to detect, process, and ground
abstraction in natural language. Next, we devise a
novel abstraction elicitation methodology and de-
liver the HEXAGONS dataset as a novel benchmark
to explore the automatic processing of differ-
ent levels of abstraction. This dataset may also
serve broader communities such as AI researchers,
linguists, cognitive psychologists, and STEM
educators in the study of human processing of ab-
straction. Finally, for the instruction-to-execution
task we derive from the HEXAGONS data, we show
experimental evidence that unequivocally con-
firms that abstract instructions in NL are indeed
more challenging for current systems to process,
and we expose abstraction as an important and
challenging dimension for further study in NLP.1

2 The Challenge: Eliciting and
Processing Abstraction in NL

Abstraction is a cognitive phenomenon related
to diverse human activities such as learning, deci-
sion making, and behavior regulation (cf. Burgoon
et al., 2013). In the context of human-computer
interaction, and in general in human problem-
solving, abstraction is said to be one of a set of
cognitive skills known as Computational Thinking
(CT) skills, defined by Cuny, Snyder, and Wing,
(2010) as ‘‘the thought processes involved in for-
mulating problems and their solutions so that the
solutions are represented in a form that can be ef-
fectively carried out by an information-processing
agent.’’ Abstraction in this context refers to a
process of information reduction (Burgoon et al.,
2013), where multiple instances are conceived as
arising from a single object, ‘‘consisting of their
shared properties while discarding irrelevant dis-
tinctions’’ (Wing, 2011).

Abstraction is considered by many as the most
important CT skill, allowing a human to think in
terms of objects and concentrating on their es-

1The data and models, along with the collection infrastruc-
ture (HEXAGONS App, Game and tasks), are publicly available
at: https://OnlpLab.github.io/Hexagons.

Figure 2: Levels of Abstraction in NL. Two draw-
ing procedures for drawing the illustrated image,
manifesting low-level and high-level abstraction.

sential features, while ignoring irrelevant details
(Dijkstra, 1972; Denning et al., 1989; Koppelman
and Van Dijk, 2010; Wing, 2011, 2017). Thus,
abstraction leads to a speaker’s capacity for be-
ing more precise and less error-prone (Dijkstra,
Accessed 1 May 2021; Haberman, 2004) and
to designing more concise, elegant and efficient
solutions (Ginat and Blau, 2017).

To illustrate how humans may exhibit different
levels of abstraction, consider the simple example
in Figure 2, where a human is requested to de-
scribe a pattern on a 2D HEXAGONS board. The first
(top) NL procedure expresses low-level abstrac-
tion; it refers to each occurrence of a half-column
as a unique event. This is a repetitive and lengthy
procedure. In contrast, the second (bottom) NL
procedure refers to all the occurrences of this half-
column at once (via ‘repeat but alternate’), dis-
carding distinctions related to, for example, tiles’
positions and colors. The result of this abstraction
is thus concise, clear and far more efficient.

In a broader sense, in order to express ab-
straction speakers employ so-called abstraction
mechanisms—such as objects, functions and con-
trol flow (Koppelman and Van Dijk, 2010)—and
expertise in using them is considered an impor-
tant part of humans’ CT skills (Grover and Pea,
2013). Such mechanisms are invoked in Figure 1.
This kind of communication is not limited to the
simple HEXAGONS board used in Figures 1–2. It is
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relevant in countless many other domains as in the
aforementioned calendar and car examples.

Due to the prevalence of abstraction in human
communication, models would need to process
varied levels of abstraction in order to correctly
interpret NL instructions. But in order to success-
fully develop such models, we have to collect data
that systematically reflect such phenomena, and
to the best of our knowledge, this has not yet been
done in NLP. The challenge of eliciting abstraction
is genuine, as we aspire to elicit natural language
that reflects authentic human communication of
any speaker. But we cannot simply request crowd-
workers to employ abstraction mechanisms as
they are not familiar with these formal concepts.
On the other hand, explicitly teaching them to
employ abstraction undermines the naturalness of
expression. So, how do we break out of this loop?

3 The Proposed Methodology

In this work we are interested in creating sit-
uations where humans express abstraction in
NL spontaneously and naturally, towards learn-
ing models that can interpret such abstractions.
To achieve this goal, we turn to the vast re-
search in human learning and STEM education,
on cultivating (and thus eliciting) higher-order CT
skills in humans (Cuny, Snyder, and Wing, 2010;
Shute et al., 2017). Eliciting such higher-order
thinking requires a careful task design, drawing
on literature on the development of instru-
ments that probe and assess humans’ CT skills
(Ructtinger and Stevens, 2017; Relkin and
Bers, 2019; Basu et al., 2021).

Our designed task stimuli are carefully crafted
to evoke abstraction without explicitly requesting
workers to do so. Our elicitation methodology
extends a recent trend in grounded semantic
parsing, where players engage in a referential
game (situated collaborative scenarios in terms
of Jayannavar et al. [2020]) where an Instructor
provides instructions that should be grounded and
executed in a (simulated) world (Long et al., 2016;
Bisk et al., 2016a; Kim et al., 2019; Jayannavar
et al., 2020). The remainder of this section elab-
orates on the virtual environment we devise, and
the task stimuli we design for elicitation.

3.1 The HEXAGONS App and Game

In order to collect NL descriptions which express
diverse abstraction levels, we design an online

Figure 3: A Sample of the HEXAGONS Image Gallery.

drawing app that enables users to construct in-
creasingly complex images on a HEXAGONS board,
a two-dimensional board paved with hexagonal
tiles, of the kind illustrated in Figures 1–2. The
HEXAGONS board contains 18 columns and 10 rows,
and the HEXAGONS App UI provides a drawing in-
terface in which a user may paint tiles using a
palette of eight colors.

In order to elicit NL instructions, we extended
the app with an instruction-following game where
a human agent is asked to describe the construction
process of a given image (e.g., Figure 3) to a
different user of the app, who has access to a
similar but blank HEXAGONS board. The game has
two different modes. The first mode is called
Description, where a user is given an image from
a pre-defined pool and has to provide instructions
in NL on how to construct the image. Every
line break in the textual description initiates a new
instruction. The second mode is called Execution,
where a user accepts a sequence of instructions
one by one, and needs to execute them sequentially
to reconstruct the target image on the board.

We refer to each pair of an instruction and a
corresponding execution as a drawing step. We
call the sequence of drawing steps composing the
full image a drawing procedure.

3.2 The Task Stimuli

The HEXAGONS app assumes a single primitive ac-
tion that corresponds to the two-place predicate
paint(position, color), which specifies
a color for a specific tile in the 180 hexagon
tiles. The key idea is to ask Instructors to con-
struct a complex image that manifests some reg-
ularity. The regularity is intended to encourage
Instructors to seek more efficient alternatives to
the primitive-level operations, which then evokes
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CT skills such as decomposition and abstraction
in order to deliver an economic and efficient
construction.

In what follows we briefly elaborate, for each
abstraction mechanism that we target, how we
design the form on the HEXAGONS board that
potentially evokes this mechanism.

• Objects. Users may refer to a set of instances
at once by means of the form they make (line,
circle, triangle, etc.), discarding other details
such as the position and color of individual
tiles. Objects may be defined in one place,
and referred to elsewhere (as in Figure 1).

• Bounded Iterations (‘For’ loops). To elicit
bounded loops we design images that man-
ifest periodic replication of an object. For
example, Figure 3(a) shows a replication of
a flower pattern 12 times.

• Conditional Iterations (‘While’ loops). To
elicit conditional loops we design images that
manifest a periodic replication of an object
controlled by a certain condition. For exam-
ple, in Figure 3(b), to replicate the lines with
different length one may use the condition
‘extend the lines out up to the boundaries of
the board.’

• Conditional Statements (‘if-then’). We de-
sign images that manifest random replication
of steady variants of an object, where em-
ploying a condition enables users to capture
all variants at once. For example, to cap-
ture the two variants of five-tile-long lines
in Figure 3(c), one cannot simply use rep-
etition, as the replication is not periodic.
However, noticing that the red and blue ‘tops’
go with the green and yellow ‘tails’ respec-
tively, enables a user to achieve an economic
description using a condition on the ‘top’ tiles.

• Functions. We design images that manifest
replication of objects in different colors or
positions, to encourage defining a ‘block’
and then applying it with different param-
eters. Moreover, we use a particular set of
visual functions, of symmetrical operations,
and particularly reflection and rotation (e.g.,
Figures 3(d,e)).

• Recursion. This is a unique type of func-
tions which is challenging to evoke. We
approach this challenge by designing three

types of stimuli: growing patterns, spirals,
and self-similarity patterns, for example,
fractals (Figure 3(f)).

We note that the association between images
and targeted abstraction mechanisms has been
defined a priori. However, in effect, users may
generate instructions with no abstraction or use
a different abstraction mechanism to achieve the
same result. All in all, since users (and in particu-
lar, crowdworkers) aim to be efficient, they tend
(even if not explicitly told) to employ abstractions.

4 Data Collection and Curation

For the data collection we employed English-
speaking workers from Amazon Mechanical Turk
(MTurk) and adopted the methodology of con-
trolled crowdsourcing (Roit et al., 2020; Pyatkin
et al., 2020) to ensure a high quality corpus. Specif-
ically, the process includes four stages: pilot,
recruitment, annotation, and consolidation.

We collect drawing procedures for the task
stimuli in a process that comprises of two steps:

(1) In the Collection phase an Instructor writes
instructions for drawing a given image, step
by step via the Description mode of the
game. Following this, the Instructor aligns
each instruction she has written to its respec-
tive execution on the board via the Execution
mode of the game. The result of this process
is a drawing procedure where instructions
are coupled with their actions grounded on
the HEXAGONS board.

(2) In the Verification phase each drawing pro-
cedure from the Collection phase is given
to two Verifiers who do not have access to
the original image. The Verifiers are shown
the instructions one by one in the Execution
mode. Their task is to execute the instruc-
tions step by step until reconstructing the full
image.

This two-phase process is intended to reveal faulty
instructions and to ensure the quality and exe-
cutability of the collected procedures, by making
the Instructor’s intentions explicit (step 1), and by
exposing disagreements with Verifiers (step 2).

Pilot and Recruitment We checked the flow,
clarity, and feasibility of the data collection in a
pilot study, followed by two separate rounds of
recruiting Instructors and Verifiers.
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To recruit Instructors, we screened workers
by examining understanding and engagement in
the Instructor task. Appropriate candidates had
to complete three Instructor tasks, that is, repeat
the Collection phase with three randomly selected
images from our pool. In no stage did we for-
mally teach workers what abstraction is. Instead
we engage the workers in several tasks and en-
courage them to write their instructions efficiently
and to avoid tiresome repetitions of the primitive
paint. Out of the 34 candidates, we assembled
a group of 28 Instructors exhibiting diverse levels
of abstraction, out of which 24 took an active role
during the annotation procedure.

We follow a separate process in recruiting Ver-
ifiers using the Verification phase, instructing
candidates to be as accurate as possible while
executing drawing procedures. Out of 27 can-
didates, we recruited 16 workers exhibiting the
most precise work. The groups of Instructors
and Verifiers are disjoint, so drawing procedures
are verified by workers other than those who
generate them.

Annotation Procedure The annotation proce-
dure is based on a Generation-Validation cycle,
which is similar to previous protocols for cons-
tructing large-scale corpora by untrained crowd-
workers (FitzGerald et al., 2018). Specifically,
based on images from our crafted stimuli, draw-
ing procedures are first generated and verified by
the Instructors in the Collection phase, and then
each procedure is given to two additional Veri-
fiers, that work through the Verification phase to
check the understandability and executability of
the procedures.

The annotation process itself consisted of two
rounds. In the first round we gave each image
from our pool to three Instructors in order to
generate three different drawing procedures for
each image. Each of the generated procedures was
verified as usual. In the second round, we pre-
sented Instructors with the opportunity to draw
new images on a blank HEXAGONS board. The goal
is to scale-up the extension of the image-pool
with interesting compositions using crowdsourc-
ing. Indeed, the collected images in this round
reflect similar rationale to our own set of images
(e.g., Figure 4(a–b)) yet demonstrate more com-
plex interactions between structures and patterns
(Figure 4(c–d)), with both abstract and figura-
tive images (Figure 4(e–f)). This new pool of

Figure 4: A Sample of Crowdsourced HEXAGONS Images
by MTurk Workers in the Second Round.

images then passed through the Collection and
Verification phases as usual.

Consolidation Having collected the raw data-
set, we manually inspected all drawing proce-
dures that had at least one disagreement between
an Instructor and each of the Verifiers. Then, we
developed a protocol to (i) detect Instructors’ er-
rors, (ii) classify the types of errors, and (iii) fix
the Instructor execution. The protocol was applied
to the data by the two first authors. The reported
agreement on error classification was 0.95 and
0.98 Cohen’s Kappa for the first two tasks and
95% agreement for the last one. Following this
protocol, we detected cases where the Instruc-
tor’s execution is not properly aligned with the
instruction, and manually corrected the execu-
tion to match the instruction. Types of errors
include: Over-/Under-execution where Instructors
executes more/less than the instructions require;
miscounting of positions on the board; error prop-
agation from previous steps, and others such as
using wrong colors. All in all we inspected 1461
drawing steps out of which 20.8% were identi-
fied as having Instructors’ error and subsequently
were manually corrected. This process results
in data with fully-aligned instruction-execution
pairs for each of the instructions in each of the
drawing procedures.

Annotation Costs We used Amazon Mechan-
ical Turk to recruit English-speaking workers
for this study. Participants in the data collec-
tion rounds were paid higher rates than in Pilot
and Recruitment. The payments for Collection and
Verification were $1.50 and $0.50, respectively.2

2We never rejected results or blocked workers. Rather,
we used MTurk qualifications as part of our controlled data
collection methodology described here.
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Steps Procedures Tokens
Unique
Images

Recruitment 1045 123 21K 17
Round I 1909 304 43K 101
Round II 1223 193 36K 63
Total 4177 620 100K 175

Table 1: Dataset Statistics.

5 The HEXAGONS Dataset

Our finalized dataset is the collection of all draw-
ing procedures, composed of instructions and their
aligned executions collected in both annotation
rounds and some from the recruitment stage, after
having passed our quality assurance and consoli-
dation process. In total, we collected 620 drawing
procedures yielding 4177 drawing steps, that is,
4177 instructions with aligned executions, circa
100K tokens. Table 1 shows the data statistics.

Quantitative Analysis In order to quantitatively
evaluate the resulting dataset, we define Board-
Based and Action-Based metrics that compare two
different executions of an instruction.

Let us define a function f(x) that accepts a
board statex, and translates it into a set of elements
〈position, color〉 that indicate the colored tiles.
Now let b and b′ be two states of the board,
where b and b′ are considered gold and hypothe-
sis, respectively.

Based on the f(x) function, we can define
Precision and Recall as in Equations (1) and (2),
respectively, where precision is the percentage of
tiles correctly colored from all those colored in
the hypothesis, and recall is the percentage of tiles
correctly colored from all those colored in gold.
We then define F1 as usual as the harmonic mean
of the two (see illustration in Figure 5).

Precision(b, b′) =
|f(b) ∩ f(b′)|

|f(b′)| (1)

Recall(b, b′) =
|f(b) ∩ f(b′)|

|f(b)| (2)

The metrics we report come in two flavors. In
Board-Based Metrics, f(b) picks up all colored
tiles in the resulting image after each step. In
Action-Based Metrics, f(b) focuses only on the
tiles that changed color in the current step, that
is, on the instruction’s denotation (rather than the
entire board state).

For assessing the quality of the dataset, we
compare for each drawing step, the board states

Figure 5: Board-Based and Action-Based Metrics. In
the current state (second row) the intersection between
Gold and Prediction is the three red tiles. There-
fore, recall and precision are 3

5 , 3
7 , respectively and

Board-Based F1 is 3
6 = 0.5. There are three actions

taken in Gold and five in Prediction (third row) with
one red tile in the intersection of both sets. Thus, recall
and precision are 1

3 , 1
5 , respectively and Action-Based

F1 score is 1
4 = 0.25. EM for both metrics is 0.

Mean F1 Mean Exact Match
Board-Based 91.11 [85.85, 96.37] 72.32 [58.07, 86.57]
Actions-Based 84.46 [74.71, 94.21] 75.98 [62.58, 89.38]

Table 2: Dataset Evaluation. Min/Max Mean F1
and EM scores are in brackets.

(or actions) of the Instructor considered as gold,
to the board states (or actions) of a Verifier,
considered the hypothesis. We report the Mean
F1 and Exact Match (EM) averaged over the
entire dataset. In addition we report the Max(/Min)
Mean F1 and EM which takes into account only
the higher(/lower)-scoring Verifier for each step.

Table 2 shows the dataset evaluation. The EM
metric is more strict than Mean F1. The Max
Mean-F1 score of circa 96 indicates that the im-
ages can most of the times be reproduced by at
least one human following the instructions, despite
the complexity of the instructions.

Qualitative Analysis: Overall Phenomena In
order to understand the distribution of the elicited
NL phenomena in our dataset we sampled 24
drawing procedures with a total of 194 drawing
steps (instruction), preserving the internal distri-
bution of stimuli types and annotation rounds. We
then manually categorized utterances according

1347



General Type # # Steps # Drawing
Phenomenon Procedures

Abstraction Object 77 95 (48.97%) 22 (91.67%)
Control 61
Functions 49

Goal/Result Goal 18 33 (17.01%) 13 (54.17%)
Result 17

Linguistic
Anaphora 63 88 (45.36%) 15 (62.5%)
Ellipsis 17
Comparatives 23

Spatial 225 132 (67.69%) 23 (95.83%)

Table 3: Abstract, Linguistic and Spatial Phenom-
ena in the HEXAGONS Dataset.

to abstract, linguistic and spatial phenomena, as
summarized in Table 3.

Qualitative Analysis: Levels of Abstraction
To probe further into the levels of abstraction
that are manifested in the dataset, the first two
authors annotated all the instructions in the dev set
to one of four levels of abstraction we identified.

• No abstraction (0): In this level Instructors
generate concrete instructions which show
no abstraction. The instructions specify the
coordinates and colors to be painted, in an
absolute (e.g., ‘‘Paint the third hexagon in
the sixth column green’’) or a relative (e.g.,
‘‘Paint the tile below this tile red’’) fashion.

• Low-Level Abstraction (1): In this level In-
structors refer to a collection of tiles as a
single object by means of the topographic
shape they form in cases they form ver-
tical or diagonal lines, which are endemic
to the HEXAGONS board (e.g., ‘‘paint the
first column from the left green’’, ‘‘connect
a diagonal line between the two tiles you
just painted’’).

• Mid-Level Abstraction (2): In this level, In-
structors refer to multiple tiles as defining an
object (above and beyond lines), by applying
an abstraction mechanism on multiple tiles
(e.g., first step in Figure 1).

• High-Level Abstraction (3): In this level In-
structors use diverse abstraction mechanisms
(Table 4) applied to multiple objects which
themselves can be complex or abstract (as
illustrated in the last three steps in Figure 1).

The annotation to levels was conducted in two
stages. In the first stage the dev set was annotated
into three levels where the last two levels are

Abs. Mechanisms Examples
Bounded Iterations ‘‘Make four more caterpillars below

the original leaving an empty space
between every two caterpillar.’’

Cond. Iterations ‘‘Repeat this pattern until you
run out of room on grid.’’

Cond. Statements ‘‘Directly beneath the painted tiles,
paint green and yellow vertical columns of
five touching tiles, using green below
the red tiles and yellow below the blue
tiles.’’

Objects ‘‘make a blue dog bone shape’’
Symmetry ‘‘Reflect the multi-colored triangle you

made in the previous two steps
symmetrically over the black diagonal.’’

Recursion ‘‘Form an X by . . . At each corner,
. . . form 4 smaller X shapes’’

Table 4: Abstraction Mechanisms in the HEXA-
GONS Dataset.

No Low Mid High Total(0) (1) (2) (3)

# Instructions 174 47 104 121 446
(39%) (10.5%) (23.3%) (27.1%) (100%)

Table 5: Levels of Abstraction in the Dev Set.

combined into a single category (Mid-to-High).
In the second stage, Mid-to-High cases were split
into two levels. The inter-annotator agreement
for the first stage is 0.923 Krippendorff’s Alpha
(Krippendorff, 2004) and for the second stage it
is 0.94 Krippendorff’s Alpha. For both coeffi-
cient’s calculations we use the weighted scheme
for ordinal variables (Gwet, 2015).

Table 5 shows the distribution of abstraction
levels we defined within the drawing steps in the
dev set. This analysis shows that most of the draw-
ing steps (>60%) contain abstract instructions,
where 50% contain Mid-to-High abstraction level.

6 Experiments

The Task Given the HEXAGONS dataset, we aim
to devise models that interpret NL instructions
and mimic an Executor’s role, in order to as-
sess how standard Pre-trained Language Models
(PLM) interpret these utterances.

To this end, we define a computational task
as follows. Let D = d1 . . . dn be a sequence
of NL instructions of a drawing procedure and
let b = t1 . . . t180 be a board state naming all
tiles’ colors on the board at a given state. We
aim to induce a function f(d1 . . . dn) = b1 . . . bn
that maps a given sequence of instructions to the
sequence of board states that indicate the instruc-
tions’ denotation on the board. Since such an f
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#Proc. #Steps Agreed Procedures Agreed Steps
Train 496 3278 392 (79.51%) 87.19%
Dev 62 446 49 (79.09%) 85.43%
Test 62 453 43 (69.35%) 83.22%
Total 620 4177 484 (78.44%) 86.57%

Table 6: Data Splits Statistics.

is overly complex, we model each drawing pro-
cedure as a sequence of instruction-to-execution
steps, where, given an instruction di in a proce-
dure, we seek a model for g(di) = ({aij}lij=1)
to predict the li denoted actions ai1...aili , where
aij = 〈rowij , columnij , colorij〉. Intuitively, this
means that in the execution of each drawing step,
we classify each tile to a color label or no action.

Input Configurations For each of the models,
we experiment with several input settings that
differ in the type and extent of context provided: (i)
No-History. The input is only the instruction to be
executed (current drawing step). (ii) 1-Previous.
The input contains the instruction to be executed
(current step) and one previous instruction. (iii)
Full-History. The input contains the instruction
to be executed and all previous instructions in
that drawing procedure. (iv) Oracle Board-state.
The input contains the instruction to be executed
and the gold board-state that is obtained prior to
the current drawing step. No previous instruction
history is included. (v) Predicted Board-state. The
input contains the instruction to be executed and
the predicted board-state, predicted for all steps
so far. No previous instruction history is included.
(vi) Full-History + Oracle/Predicted Board-state,
a combination of (iv) and (v) with full history (iii).

Data Splits We split the dataset into train/dev/
test with an 80/10/10 ratio of the drawing proce-
dures (Table 6). Following up on recent practices
(Finegan-Dollak et al., 2018; Herzig and Berant,
2020; Goldman et al., 2022), we randomly split
the data in a way that avoids shared stimuli be-
tween the train, dev, and test sets. Specifically,
(i) we make sure that there is no image overlap
between the three sets (recall that each image is
delivered to at least three Instructors; see Sec-
tion 4), and (ii) we keep the same distribution of
images in terms of the abstraction mechanisms
they are designed to elicit (Section 3) as well as
the same proportion between the images collected
in different annotation rounds.

6.1 Models
We design two neural models based on two types
of PLMs, a BERT-style encoder-only model and
a generative encoder-decoder model. For each of
these architectures, we modelled the task in a way
that is most compatible with it, a classification
task for the encoder model (DeBERTa) and a gen-
eration task with the encoder-decoder model (T5).
We describe here our two architectures in turn.3

Classification-Based: For the classification
model we fine-tune DeBERTa4 (He et al.,
2020) with a classification head to predict an
action/no action for each of the tiles, resulting
in 180 prediction steps for each instruction. The
output of each prediction is one of 9 classes (8
colors and 1 no action). We define the inputs
for the task as follows: The current instruction
is prepended with a given tile’s coordinates,
to indicate for which of the tiles the model
is making a prediction (e.g., <row number>
<column number> <current instruction>). In the
Full-History setting, the previous instructions are
concatenated with a delimiter. When adding the
board-state, we represent it as a sequence of 180
colors and we additionally mark the given tile
with delimiters (e.g., ..blue, white, TARGET S,
red, TARGET E, red..).

Generation-Based: T5 (Raffel et al., 2020) is a
generative transformer architecture which uses a
text-to-text framework for a variety of NLP tasks.5

We formulate our text-to-actions task as a
text-to-text task using a straightforward in-
put/output scheme: The task’s input is put in
a template that consists of a prefix and a suf-
fix (simplify instructions: <current instruction>.
simplified instructions:) and fed as input to the
model.6 The gold output actions are formatted into
text by first transforming them into triplets (<row

3We fine-tune all models for 20 epochs with early stopping
and a batch size of 4. During inference, when performing
conditional sequence generation (with T5) we use beam
search with a beam size of 3, without sampling.

4Specifically we use DebertaForSequenceClassification
from the Huggingface Transformers library (Wolf et al.,
2020), with the microsoft/mdeberta-v3-base model.

5We use the T5 V1.1 Model Adapted checkpoint, which
we found in preliminary experiments to perform better
for our task: https://huggingface.co/google/t5
-base-lm-adapt.

6The prefix we use is inspired by T5’s pre-training
scheme; using a natural language task prefix. This tem-
plate may be viewed as a ‘‘prompt’’ (Liu et al., 2021),
but we did not engage with extensive prompt-engineering.
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F1 EM

Baseline 13.15 5.96
Skyline 82.06 72.3

Table 7: Baseline and Skyline on the Test Set.

number> <column number> <color>), which we
then combine into a longer comma separated string
(e.g., 0 4 red, 0 5 blue, 1 0 green), ordering the
actions by row and column. During inference, we
generate the most likely continuation for the input
at hand. We then take the generated sequence and
parse it into actions, discarding malformed token
sequences. Due to the generative nature of the
process, the model’s current prediction is condi-
tioned on all previously predicted actions for a
given step.

Baseline and Skyline Our naı̈ve baseline model
is a deterministic rule-based model based on
pattern-matching, in line with previous work
(Pišl and Mareček, 2017). The model we design
detects patterns that reflect the basic predi-
cate paint(position, color), where the
position assumes coordinates on a (top-down,
left-right) grid. For example, given the sentence
‘‘In the first column, color the 2nd tile blue’’, this
model extracts the action Paint((2, 1), blue). The
naı̈ve model refers only to the current instruction.
As a skyline we use human performance on the
task, presented in terms of the Action-Based Mean
F1/EM for the dev and test sets.

Evaluation Metrics To evaluate models’ per-
formance, we report Action-Based Mean F1/EM
of the predicted actions compared to gold actions.
That is, the Action-Based F1/EM (Section 5) are
averaged over all instructions in the test set.

7 Results and Analysis

Table 7 shows results of the naı̈ve baseline and
the human skyline performance and Table 8 shows
the performance of the neural models across the
different input configurations, on the test set.

The results show that all models perform
substantially better than the naı̈ve rule-based base-
line, where the lowest results (obtained by the
No-History condition) are still 23.23 F1 and 15.23
EM points over this baseline on the test set. At the

We reserve the investigation of prompts and templates for
future work.

DeBERTa T5

F1 EM F1 EM
No-History 36.38 21.19 36.84 21.63
1-Previous 37.51 20.31 38.94 23.17
Full-History 46.15 25.39 43.6 26.49
Predicted Board 40.7 24.28 40.21 26.49
Predicted + Full 40.47 21.19 38.56 23.4
Oracle Board 43.52 22.74 43.31 28.03
Oracle + Full 49.55 25.61 48.11 31.35

Table 8: Results of DeBERTa and T5 on the
Test Set.

same time, all models are substantially inferior to
human performance, where the best model perfor-
mance (Full-History) is 35.91 F1 and 45.81 EM
points below human performance on the test set.

DeBERTa and T5 both show the same trends
for the different input configurations, with the
generative model (T5) often performing better at
EM and the classifier (DeBERTa) having higher F1.

Our ablated experiments on input configu-
rations are designed to empirically assess the
contribution of two kinds of contexts, textual and
board-state contexts. We observe that textual con-
text (previous instructions) is an important factor
in model performance; the longer the context is,
the better the model performs. Performance is low-
est when predicting executions on the HEXAGONS

board with only the current instruction as input
(No-History). Adding more context proves to be
beneficial, with the Full-History condition hav-
ing the best realistic (non-oracle) performance.
This result corroborates previous findings which
show that models benefit from textual history
(Haber et al., 2019; Xu et al., 2022).

A different way of providing context for the ex-
ecution of an instruction is via the state of previous
executions on the board. Here, we experiment with
either providing an oracle board-state at each step,
or iteratively feeding the predicted board-states
from the previous step to the current step. While
providing the oracle board-state improves perfor-
mance upon the No-History condition, our results
show that it is not as informative as including the
full instruction history.

A possible reason may be that textual instruc-
tions often refer back to previously introduced
(or decomposed) objects, while board states do
not explicitly name these decomposed concepts.
Adding both the oracle board-state and all previous
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Figure 6: Qualitative Learning Curve of DeBERTa and
T5 on Full History Models, Mean EM.

Figure 7: Qualitative Learning Curve of DeBERTa and
T5 on Full-History Models, Mean F1.

instructions as input results in the best perfor-
mance, however this is not a realistic setup. The
more realistic context setting is that of a predicted
board and all previous instructions, but it performs
worse than only providing full history, due to error
propagation in the predicted states.

Abstraction Levels Figures 6–7 present the
models’ performance by abstraction levels (Sec-
tion 5) across increasing train set sizes. The results
on the full train set show that models’ performance
is inversely correlated with the abstraction-level
of the instructions; models’ performance on ex-
ecutions of concrete primitive-like instructions
exceeds those of Mid-to-High level of abstraction.
This result is significant across models, metrics,
and input configurations.7

7We checked significance by conducting several Kruskal-
Wallis tests to compare model performances by abstraction
levels for all possible combinations of different models (T5

Abs. F1
Levels No Low Mid High All
Baseline 24.38 20.55 7.25 3.59 14.34
Skyline 87.77 93.55 85.02 83.52 86.59

EM

Baseline 14.37 12.77 2.88 0.83 7.85
Skyline 81.32 86.17 75.96 69.42 77.35

Table 9: Baseline and Skyline on the Dev Set
by Levels of Abstraction.

Comparing these results with baseline and sky-
line by the levels of abstraction (Table 9), we
observe that model performance resides between
these two boundaries while substantially inferior
to skyline across all four levels of abstraction.

The results on the gradually increasing train
set size show that although in general all levels
of abstraction benefit from larger train sets, still
model performance on non-abstract instructions
is consistently better than instructions exhibiting
Mid-to-High-level of abstraction, keeping a mean
gap of circa 38 Mean F1. Noticeably, the increase
for the highest abstraction level is very mild. es-
pecially for EM. This hints that no substantial
learning is happening at the highest abstraction
level, and a different architecture or training
regime, geared towards abstraction, is needed.

We manually inspected executions of our mod-
els with respect to the levels of abstraction of the
instruction. Looking at the successful executions
of high-level instructions, we observe that those
instructions are mainly instances where no actions
should be performed, for example, Goal/Result
declarations, or instances where very common
objects (e.g., flowers) are defined and drawn.
More complex functions, such as repetitions with
conditions, are harder for the models to interpret.

An example of how executions differ be-
tween different abstraction levels is displayed in
Figure 8. The model correctly executes the first in-
struction which contains no abstraction. The next
instruction is of high abstraction including repli-
cation of the triangle object. The model does not
manage to identify the spots where to attach the
new triangles, or to generate appropriate triangles.

and DeBERTa), scores (F1 and EM) and input configurations
(Full-History and No-History). For brevity, Figures 6–7 show
only the input configurations of Full-History models.
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Figure 8: Processing Different Abstraction Levels.
DeBERTa’s executions (left) and gold board-states
(right) for different levels of abstraction. Instruction
(a)–(b): ‘‘Use green to fill in the 2nd and 3rd spots on
the 3rd column, 1st and 2nd spots on the 4th column,
and 2nd spot on the 5th column.’’, F1 = 1; (c)–(d):
‘‘Create the same shape with green on all the purple
and orange spots.’’, F1 = 0.08.

These findings are all consistent with the claim
that abstract instructions pose a challenge for
current NLP technology, orthogonally to data size
and various other factors.

8 Related Work

Studying abstraction in collaborative communica-
tion is related to previous studies on collaborative
games that focus on how interlocutors generate
referring expressions accepted and understood by
both the speaker and hearer (Clark and Wilkes-
Gibbs, 1986; Khani et al., 2018; Haber et al.,
2019; Udagawa and Aizawa, 2019). In such situ-
ations a speaker attempts to generate the shortest
refererring expression that will sufficiently com-
municate their intention. This phenomenon of
minimizing speakers’ effort is inline with Grice’s
(1975) maxim of quantity, stating that speakers
will give as much information as needed and
not more.

The settingsofcollaborativegamesareverycommon
in creating datasets for grounded semantic pars-
ing as navigation tasks (Anderson et al., 1991;
MacMahon et al., 2006; Anderson et al., 2018;
Chevalier-Boisvert et al., 2018; Misra et al., 2018;
Chen et al., 2019; Paz-Argaman and Tsarfaty,
2019; Suhr et al., 2019), the 2-D/3-D blocks
world (Bisk et al., 2016a,b, 2018; Jayannavar

et al., 2020), and other instruction-following sce-
narios (Long et al., 2016; Kim et al., 2019). Some
of these studies observe abstraction as a phe-
nomenon that indeed occurs in NL instructions
(e.g., Anderson et al., 2018), implying that ab-
straction is a cross-domain and hence critical
phenomenon for natural language understand-
ing. However, eliciting naturally-occurring NL
instructions that reflect a variety of abstrac-
tion levels in a systematic way is novel to the
HEXAGONS data.

To confirm this, we inspected the 2-D Blocks
dataset (Bisk et al., 2016a,b; Pišl and Mareček,
2017), which most resembles our setting. Sam-
pling 594 instructions (5% of the train set), we
found that almost all the instructions (96.5%) map
to actions of shifting a single block to some loca-
tion, with some spatial expressions (e.g., ‘‘place
box 17 three spaces above box 20’’). Such instruc-
tions are labeled ‘‘no abstraction’’ in our protocol
(see Section 5). Notably, a fraction of the sample
does express some low-level (2.7%) and mid-level
(0.8%) abstraction.

Two other studies that are particularly related
to our work are by Wang et al. (2017) and Wang
et al. (2016). In the VoxeLurn study (Wang et al.,
2017), a community of users is interacting with a
computerized agent to deliver constructions in a
3-D blocks world. The community gradually and
collaboratively builds increasingly complex and
more abstract language from a core programming
language via a process called ‘‘naturalization’’.
SHRDLURN (Wang et al., 2016) exhibits similar
constructions but on an individual rather than a
community effort. Both studies indeed address ab-
straction, but from an opposite direction to ours;
while these works assume a strict narrow and syn-
thetic language and build abstractions bottom-up,
our work aims to tackle the opposite direction,
uncovering abstractions that are expressed in un-
restricted informal NL and grounding them in an
executable ‘backend’. Thus, these studies and ours
exhibit orthogonal ways to address abstraction.

9 Conclusion

We bring to the fore of NLP a novel and crit-
ical aspect of human–computer communication,
namely, the ability to automatically detect, inter-
pret, and ground abstraction in NL. We devise
an abstraction elicitation methodology and de-
liver a novel benchmark, HEXAGONS, manifesting
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the denotation of instructions rich and diverse
in their levels of abstraction. Our results on the
instruction-to-execution task derived from these
data show that the models’ performance is sig-
nificantly inversely correlated with the level of
abstraction, and this holds across models, con-
texts, and data sizes. This work opens a manifold
of directions for future research such as generating
human-like abstractions or detecting the level of
abstraction, as well as studying abstraction in ad-
jacent fields as linguistics, cognitive science and
NL programming.
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