@article{sartran-etal-2022-transformer,
title = "Transformer Grammars: Augmenting Transformer Language Models with Syntactic Inductive Biases at Scale",
author = "Sartran, Laurent and
Barrett, Samuel and
Kuncoro, Adhiguna and
Stanojevi{\'c}, Milo{\v{s}} and
Blunsom, Phil and
Dyer, Chris",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "10",
year = "2022",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2022.tacl-1.81",
doi = "10.1162/tacl_a_00526",
pages = "1423--1439",
abstract = "We introduce Transformer Grammars (TGs), a novel class of Transformer language models that combine (i) the expressive power, scalability, and strong performance of Transformers and (ii) recursive syntactic compositions, which here are implemented through a special attention mask and deterministic transformation of the linearized tree. We find that TGs outperform various strong baselines on sentence-level language modeling perplexity, as well as on multiple syntax-sensitive language modeling evaluation metrics. Additionally, we find that the recursive syntactic composition bottleneck which represents each sentence as a single vector harms perplexity on document-level language modeling, providing evidence that a different kind of memory mechanism{---}one that is independent of composed syntactic representations{---}plays an important role in current successful models of long text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sartran-etal-2022-transformer">
<titleInfo>
<title>Transformer Grammars: Augmenting Transformer Language Models with Syntactic Inductive Biases at Scale</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Sartran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Barrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adhiguna</namePart>
<namePart type="family">Kuncoro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miloš</namePart>
<namePart type="family">Stanojević</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We introduce Transformer Grammars (TGs), a novel class of Transformer language models that combine (i) the expressive power, scalability, and strong performance of Transformers and (ii) recursive syntactic compositions, which here are implemented through a special attention mask and deterministic transformation of the linearized tree. We find that TGs outperform various strong baselines on sentence-level language modeling perplexity, as well as on multiple syntax-sensitive language modeling evaluation metrics. Additionally, we find that the recursive syntactic composition bottleneck which represents each sentence as a single vector harms perplexity on document-level language modeling, providing evidence that a different kind of memory mechanism—one that is independent of composed syntactic representations—plays an important role in current successful models of long text.</abstract>
<identifier type="citekey">sartran-etal-2022-transformer</identifier>
<identifier type="doi">10.1162/tacl_a_00526</identifier>
<location>
<url>https://aclanthology.org/2022.tacl-1.81</url>
</location>
<part>
<date>2022</date>
<detail type="volume"><number>10</number></detail>
<extent unit="page">
<start>1423</start>
<end>1439</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Transformer Grammars: Augmenting Transformer Language Models with Syntactic Inductive Biases at Scale
%A Sartran, Laurent
%A Barrett, Samuel
%A Kuncoro, Adhiguna
%A Stanojević, Miloš
%A Blunsom, Phil
%A Dyer, Chris
%J Transactions of the Association for Computational Linguistics
%D 2022
%V 10
%I MIT Press
%C Cambridge, MA
%F sartran-etal-2022-transformer
%X We introduce Transformer Grammars (TGs), a novel class of Transformer language models that combine (i) the expressive power, scalability, and strong performance of Transformers and (ii) recursive syntactic compositions, which here are implemented through a special attention mask and deterministic transformation of the linearized tree. We find that TGs outperform various strong baselines on sentence-level language modeling perplexity, as well as on multiple syntax-sensitive language modeling evaluation metrics. Additionally, we find that the recursive syntactic composition bottleneck which represents each sentence as a single vector harms perplexity on document-level language modeling, providing evidence that a different kind of memory mechanism—one that is independent of composed syntactic representations—plays an important role in current successful models of long text.
%R 10.1162/tacl_a_00526
%U https://aclanthology.org/2022.tacl-1.81
%U https://doi.org/10.1162/tacl_a_00526
%P 1423-1439
Markdown (Informal)
[Transformer Grammars: Augmenting Transformer Language Models with Syntactic Inductive Biases at Scale](https://aclanthology.org/2022.tacl-1.81) (Sartran et al., TACL 2022)
ACL