@inproceedings{kumari-etal-2022-bias,
title = "Bias, Threat and Aggression Identification Using Machine Learning Techniques on Multilingual Comments",
author = "Kumari, Kirti and
Srivastav, Shaury and
Suman, Rajiv Ranjan",
editor = "Kumar, Ritesh and
Ojha, Atul Kr. and
Zampieri, Marcos and
Malmasi, Shervin and
Kadar, Daniel",
booktitle = "Proceedings of the Third Workshop on Threat, Aggression and Cyberbullying (TRAC 2022)",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.trac-1.4",
pages = "30--36",
abstract = "In this paper, we presented our team ''$IIITRanchi${''} for the Trolling, Aggression and Cyberbullying (TRAC-3) 2022 shared tasks. Aggression and its different forms on social media and other platforms had tremendous growth on the Internet. In this work we have tried upon different aspects of aggression, aggression intensity, bias of different forms and their usage online and its identification using different Machine Learning techniques. We have classified each sample at seven different tasks namely aggression level, aggression intensity, discursive role, gender bias, religious bias, caste/class bias and ethnicity/racial bias as specified in the shared tasks. Both of our teams tried machine learning classifiers and achieved the good results. Overall, our team ''$IIITRanchi${''} ranked first position in this shared tasks competition.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumari-etal-2022-bias">
<titleInfo>
<title>Bias, Threat and Aggression Identification Using Machine Learning Techniques on Multilingual Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kirti</namePart>
<namePart type="family">Kumari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaury</namePart>
<namePart type="family">Srivastav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajiv</namePart>
<namePart type="given">Ranjan</namePart>
<namePart type="family">Suman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Threat, Aggression and Cyberbullying (TRAC 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Kadar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we presented our team ”IIITRanchi” for the Trolling, Aggression and Cyberbullying (TRAC-3) 2022 shared tasks. Aggression and its different forms on social media and other platforms had tremendous growth on the Internet. In this work we have tried upon different aspects of aggression, aggression intensity, bias of different forms and their usage online and its identification using different Machine Learning techniques. We have classified each sample at seven different tasks namely aggression level, aggression intensity, discursive role, gender bias, religious bias, caste/class bias and ethnicity/racial bias as specified in the shared tasks. Both of our teams tried machine learning classifiers and achieved the good results. Overall, our team ”IIITRanchi” ranked first position in this shared tasks competition.</abstract>
<identifier type="citekey">kumari-etal-2022-bias</identifier>
<location>
<url>https://aclanthology.org/2022.trac-1.4</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>30</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bias, Threat and Aggression Identification Using Machine Learning Techniques on Multilingual Comments
%A Kumari, Kirti
%A Srivastav, Shaury
%A Suman, Rajiv Ranjan
%Y Kumar, Ritesh
%Y Ojha, Atul Kr.
%Y Zampieri, Marcos
%Y Malmasi, Shervin
%Y Kadar, Daniel
%S Proceedings of the Third Workshop on Threat, Aggression and Cyberbullying (TRAC 2022)
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F kumari-etal-2022-bias
%X In this paper, we presented our team ”IIITRanchi” for the Trolling, Aggression and Cyberbullying (TRAC-3) 2022 shared tasks. Aggression and its different forms on social media and other platforms had tremendous growth on the Internet. In this work we have tried upon different aspects of aggression, aggression intensity, bias of different forms and their usage online and its identification using different Machine Learning techniques. We have classified each sample at seven different tasks namely aggression level, aggression intensity, discursive role, gender bias, religious bias, caste/class bias and ethnicity/racial bias as specified in the shared tasks. Both of our teams tried machine learning classifiers and achieved the good results. Overall, our team ”IIITRanchi” ranked first position in this shared tasks competition.
%U https://aclanthology.org/2022.trac-1.4
%P 30-36
Markdown (Informal)
[Bias, Threat and Aggression Identification Using Machine Learning Techniques on Multilingual Comments](https://aclanthology.org/2022.trac-1.4) (Kumari et al., TRAC 2022)
ACL