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Abstract

Neural language models’ (NLMs’) reasoning
processes are notoriously hard to explain. Re-
cently, there has been much progress in au-
tomatically generating machine rationales of
NLM behavior, but less in utilizing the ratio-
nales to improve NLM behavior. For the lat-
ter, explanation regularization (ER) aims to
improve NLM generalization by pushing the
machine rationales to align with human ratio-
nales. Whereas prior works primarily evaluate
such ER models via in-distribution (ID) gen-
eralization, ER’s impact on out-of-distribution
(OOD) is largely underexplored. Plus, little is
understood about how ER model performance
is affected by the choice of ER criteria or by
the number/choice of training instances with
human rationales. In light of this, we propose
ER-TEST, a protocol for evaluating ER models’
OOD generalization along three dimensions:
(1) unseen datasets, (2) contrast set tests, and
(3) functional tests. Using ER-TEST, we study
two key questions: (A) Which ER criteria are
most effective for the given OOD setting? (B)
How is ER affected by the number/choice of
training instances with human rationales? ER-
TEST enables comprehensive analysis of these
questions by considering a diverse range of
tasks and datasets. Through ER-TEST, we
show that ER has little impact on ID perfor-
mance, but can yield large gains on OOD per-
formance w.r.t. (1)-(3). Also, we find that the
best ER criterion is task-dependent, while ER
can improve OOD performance even with lim-
ited human rationales.

1 Introduction

Neural language models (NLMs) have achieved
state-of-the-art performance on a broad array of
natural language processing (NLP) tasks (Devlin
et al., 2018; Liu et al., 2019). Even so, NLMs’ rea-
soning processes are notoriously opaque (Rudin,
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Figure 1: Explanation Regularization: Given an in-
stance and a target label, we can use rationale extractors
(See Section 2) to generate machine rationales from
a model F. Furthermore, human rationales are col-
lected from annotators. Explanation Regularization
(ER) aligns machine rationales to human rationales with
a loss term, Lggr, which is then used to refine F.

2019; Doshi-Velez and Kim, 2017; Lipton, 2018),
which has spurred significant interest in designing
algorithms to automatically explain NLM behav-
ior (Denil et al., 2014; Sundararajan et al., 2017;
Camburu et al., 2018; Rajani et al., 2019; Luo et al.,
2021). The majority of this work has focused on ra-
tionale extraction, which explains a NLM’s output
on a given task instance by highlighting the input
tokens that most influenced the output (Denil et al.,
2014; Sundararajan et al., 2017; Li et al., 2016; Jin
et al., 2019; Lundberg and Lee, 2017; Chan et al.,
2022).

Recently, a number of works have investigated
how machine rationales produced by rationale ex-
traction algorithms can be operationalized to im-
prove NLM decision-making (Hase and Bansal,
2021) (See Figure 1). Almost all prior works are
based on explanation regularization (ER), which
aims to improve NLM generalization by regulariz-
ing the NLM to yield machine rationales that align
with human rationales (Ross et al., 2017; Huang
et al., 2021; Ghaeini et al., 2019; Zaidan and Eisner,
2008; Kennedy et al., 2020; Rieger et al., 2020; Liu
and Avci, 2019).

Although prior works primarily evaluate such
ER models via in-distribution (ID) generalization
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(Zaidan and FEisner, 2008; Lin et al., 2020; Huang
et al., 2021), out-of-distribution (OOD) generaliza-
tion is more crucial in many real-world settings
(Chrysostomou and Aletras, 2022; Ruder, 2021),
yet ER’s impact on OOD generalization is largely
underexplored (Ross et al., 2017; Kennedy et al.,
2020). Plus, despite them being major factors in
ER, little is understood about how ER model per-
formance is affected by the choice of ER criterion
or by the number/choice of training instances with
human rationale supervision. In light of this, we
propose ER-TEST, a protocol for evaluating ER
models’ OOD generalization along three dimen-
sions: (1) unseen datasets, (2) contrast set tests,
and (3) functional tests. For (1), ER-TEST assesses
ER models’ task performance on datasets beyond
their training distribution. For (2), ER-TEST as-
sesses ER models’ sensitivity to counterfactual in-
stances created by perturbing existing datasets. For
(3), ER-TEST assesses ER models’ basic linguistic
capabilities (e.g., perception of word/phrase senti-
ment, robustness to typos) for the given task.

Using ER-TEST, we study two key questions:
(A) Which ER criterion are most effective for the
given OOD setting? (B) How is ER affected by
the number/choice of training instances with hu-
man rationales? ER-TEST enables comprehensive
analysis of these questions by considering a di-
verse range of text classification tasks and datasets.
Through ER-TEST, we show that ER has little im-
pact on ID performance (Sec. 5.3.1, 5.4.1), but can
yield large gains on OOD performance (Sec. 5.3.2,
5.4.2) w.r.t. (1)-(3). Also, we find that the best ER
criterion is task-dependent (Sec. 5.3), while ER
can improve OOD performance even with limited
human rationale supervision (Sec. 5.4).

2 Background

Text Classification Let 7 be a NLM task model
for M-class text classification. In modern NLP
systems, F usually has a BERT-style architecture
(Devlin et al., 2018), consisting of a Transformer
encoder (Vaswani et al., 2017) followed by a linear
layer with softmax classifier. Let x; = [z}]7; be
the n-token input sequence (e.g., a sentence) for
task instance ¢. For sequence classification, F pre-
dicts a class for sequence x;, so let F(x;) € RM
be the logits for x;. Let y; = argmax . F(X;)c
denote F’s predicted class for x;. For token classi-
fication, F predicts a class for each token z?, so let
F(x;) € R™M be the logits for the n tokens in x;.
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Let y;+ = argmax . F(X;)¢ . denote F’s predicted
class for zt. Let y; = [y;+], collectively denote
all of F’s predicted token classes for x;.

Rationale Extraction Given F, x;, and y;, the
goal of rationale extraction is to output machine
rationale r; = [r!]?_,, such that each r! € [0, 1] is
an importance score indicating how strongly token
z! influenced F to predict class y;. Let G denote a
rationale extractor, such that r; = G(F, x;, ;). G
first computes raw importance scores s; € R", then
normalizes s; as probabilities r; using the sigmoid
function. In general, G can be a heuristic or learned
function, but we focus on heuristic G in this work,
since they are more common (Luo et al., 2021).

Explanation Regularization (ER) However, G
can also be used to compute machine rationales
w.r.t. other classes besides y;, e.g., target class y;.
Let #; denote the machine rationale for x; w.r.t. 7;.
Given f; obtained via G and F, many works have
explored ER, in which F is regularized such that ¥;
aligns with human rationale 1; (Zaidan and Eisner,
2008; Lin et al., 2020; Rieger et al., 2020; Ross
et al., 2017). Typically, 1; is a binary vector, where
ones and zeros indicate positive (important) and
negative (unimportant) tokens, respectively. ER’s
inductive bias pushes F to solve the task in a way
that follows the human reasoning process given by
1;, which ideally provides denser learning signal
for improving F’s generalization.

We formalize the ER loss as: Lggr = ®(#;, 1),
where ® is an ER criterion measuring the alignment
between ; and 1;. Thus, the full learning objective
is: L = Lk + A\erLER, Where Liq is the task
loss (e.g., cross-entropy loss) Agr € R is the ER
strength (i.e., loss weight) for Lgr. Let ygr > 0 be
the rationale scaling factor, used to scale §; prior to
sigmoid normalization. If the magnitudes of the §;
scores are lower, then the t; scores will be closer to
0.5 (i.e., lower confidence). However, scaling §; by
~gr > 1 will increase the magnitude of §;, yielding
t; scores closer to O or 1 (i.e., higher confidence).
Though there are many possible choices for , it is
presently unclear how different ¢ impact training
and when certain ¢ should be preferred. This limits
our ability to use ER in real-world settings.

3 ER-TEST

Existing works primarily evaluate ER models via
ID generalization (Zaidan and Eisner, 2008; Lin
et al., 2020; Huang et al., 2021), though a small
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Figure 2: ER-TEST Framework - Apart from existing ID evaluations of ER criteria, ER-TEST evaluates ER’s
impact on OOD generalization along three dimensions: A. Unseen datasets, B. Contrast set tests and C. Functional
tests. Examples of individual functional tests shown here are not exhaustive. See Section 3 for details.

number of works have done auxiliary evaluations
of OOD generalization (Ross et al., 2017; Kennedy
et al., 2020; Rieger et al., 2020). However, these
OOD evaluations have been relatively small-scale,
only covering a narrow range of OOD generaliza-
tion aspects, ER criteria, training settings, tasks,
and datasets. As a result, little is understood about
ER’s impact on OOD generalization. To address
this gap, we propose ER-TEST, a unified bench-
mark for evaluating ER models’ OOD generaliza-
tion along three dimensions: (1) unseen datasets;
(2) contrast set tests; and (3) functional tests.

3.1 ID Generalization

While ER-TEST’s main focus is on evaluating
OOD generalization, ER-TEST also considers
ID generalization as a baseline evaluation. Let
D = {X,V}¥, be a M-class text classification
dataset, where X = {x;}¥, are the text inputs,
Y = {9:}Y, are the target classes, and N is the
number of instances (x;, ;) in D. We call D the
ID dataset. Assume D can be partitioned into train
set Dirain, dev set Dyey, and test set Diest, Where
Direst 1s an ID test set for D. After using ER to train
F on Dy,in, we measure F'’s task performance on
the ID test set Dieg. Note that this is a standard pro-
tocol used by existing works to evaluate ER models
(Zaidan and Eisner, 2008; Rieger et al., 2020; Liu
and Avci, 2019; Ross et al., 2017; Huang et al.,
2021; Ghaeini et al., 2019; Kennedy et al., 2020).

3.2 OOD Generalization

To assess F’s generalization ability when using ER,
we consider various OOD settings. Given D, let
ﬁtest denote an OOD test set, with a different dis-
tribution from D. While F is expected to perform
well on Dy (ID), F should also perform well on
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f)test (OOD). For each dimension of OOD general-
ization, we obtain Dy in a different manner.

3.2.1 Unseen Datasets

First, we evaluate OOD generalization w.r.t. un-
seen datasets. Besides D, suppose we also have a
set of datasets {D(), D)} of the same task
as D. Each of these datasets D) has its own
train/dev/test sets and a distribution shift from D.
After using ER to train F on Dy,jn, we meas%r)e
(2

test-

F’s task performance on each OOD test set D
In other words, ﬁt(;)t is obtained by simply taking
the test set of existing OOD dataset D@ This eval-
uation is designed to assess whether ER helps F
learn general (i.e., task-level) knowledge represen-

tations that can (zero-shot) transfer across datasets.

3.2.2 Contrast Set Tests

Second, we evaluate OOD generalization under
meaningful dataset perturbations. Annotation ar-
tifacts (Gururangan et al., 2018) are gaps present
in a dataset that can lead to misleading interpre-
tations of a model’s performance on that dataset.
To mitigate this, we evaluate F on contrast sets
(Gardner et al., 2020), which are (mostly) label-
changing small perturbations on instances to under-
stand the true local boundary of the dataset. Essen-
tially, they help us understand if F has learnt any
dataset-specific shortcuts.

Given D!

e (7) (a jt" instance belonging to an

OOD test set f)t(eis)t), a perturbation function ﬂg) is
applied to that instance, where p denotes the kind
of perturbation taking effect, and it often changes
the target label for that instance. For example, p
can signify semantic (e.g., changing tall to short),
numeral (e.g., changing one dog to three dogs), or

entities (e.g., changing dogs to cats). Each per-



turbation type is specific to the dataset it is being
created for, so that instance labels are changed in a
meaningful manner. The resulting set of instances
cO) = Bg) (ﬁt(ézt(j))Vj, p are termed as a contrast
set for that dataset. Based on the way they are cre-
ated, contrast sets are a property of the dataset, and
are not created to explicitly challenge F (unlike
adversarial examples (Gao and Oates, 2019)).

3.2.3 Functional Tests

Third, we evaluate OOD generalization w.r.t. func-
tional tests (Ribeiro et al., 2020; Li et al., 2020).
Unlike contrast sets which are designed to test arti-
facts present in a dataset, functional tests are used
to provide ‘zoomed-in’ insights about specific lin-
guistic capabilities (like changes in the vocabulary,
adding negations to instances, etc). Furthermore,
contrast sets are created by perturbing a reference
real-world dataset, whereas, functional tests evalu-
ate specific capabilities with the help of template-
generated synthetic instances.

If ER consistently improves JF’s performance
on such tests, then we can have higher confidence
that ER is a useful inductive bias for OOD gener-
alization for that given capability Across all tasks,
ER-TEST considers four categories of stress tests,
which are adopted from CheckList (Ribeiro et al.,
2020). Each test is described below.

Vocabulary Tests Vocabulary tests are used to
evaluate /s capability to address changes in the
vocabulary of the text, and is particularly diverse
w.r.t the parts-of-speech it caters to. For exam-
ple, certain vocabulary tests evaluate the relation-
ship (taxonomy) between different nouns in a sen-
tence, whereas some swap the modifiers or the
verbs present in a sentence in a meaningful manner
based on the task at hand, to capture F’s targeted
performance towards such changes (Ribeiro et al.,
2020).

Robustness Tests Robustness tests evaluate F’s
behavior under character-level edits to words in
a sentence, keeping the rest of the context same
so as to not change the overall prediction. They
include testing against typos as well as contractions
in words, as well as addition of tokens that are
irrelevant for the downstream task (like URLs or
gibberish like Twitter handles). (Jones et al., 2020;
Wang et al., 2020)

Logic Tests Testing F’s reasoning capabilities
towards logical changes in a sentence is also im-

96

portant to evaluate its reliance on shortcut-patterns.
These tests perturb sentences in a logical manner
(by adding or removing negations, or purposefully
inducing contradictions) that also change the target
label in the same manner. (Talman and Chatzikyri-
akidis, 2018; McCoy et al., 2019)

Entity Tests For certain tasks, named entities
like numbers, locations and proper nouns are not
relevant for predicted a target label, and are often
a source of gender or demographic biases (Mishra
et al.; Mehrabi et al., 2020). Entity tests measure
F’s sensitivity towards changed in named entities
such that the overall context as well as the task
label remains the same (Ribeiro et al., 2020).

3.3 Tasks and Datasets

To evaluate ER models, ER-TEST considers a di-
verse set of sequence and token classification tasks.
For each, task ER-TEST provides one ID dataset
(annotated with human rationales) and multiple
OOD datasets. Compared to prior works, ER-
TEST’s task/dataset diversity enables more exten-
sive analysis of ER model generalization.

First, we have sentiment analysis, using SST
(movie reviews) (Socher et al., 2013; Carton et al.,
2020) as the ID dataset. For OOD datasets, we use
Yelp (restaurant reviews) (Zhang et al., 2015), Ama-
zon (product reviews) (McAuley and Leskovec,
2013), and Movies (movie reviews) (Zaidan and
Eisner, 2008; DeYoung et al., 2019). Movies’ in-
puts are much longer than the other three datasets’.
For contrast set tests, we use an OOD contrast set
for sentiment analysis released by the authors of
the original paper (Gardner et al., 2020), which
are created for the Movies dataset. For functional
tests, we use an OOD test suite (flight reviews)
from the CheckList (Ribeiro et al., 2020) which
contains both template instances to test linguistic
capabilities, as well as real-world data (tweets).

Second, we have natural language inference
(NLI), using e-SNLI (Camburu et al., 2018; DeY-
oung et al., 2019) as the ID dataset. For the OOD
dataset, we use MNLI (Williams et al., 2017). e-
SNLI contains only image captions, while MNLI
contains both written and spoken text, covering var-
ious topics, styles, and formality levels. For NLI,
we also use an OOD contrast set created for the
MNLI dataset (Li et al., 2020). Functional tests for
NLI are generated from the A11enNLP test suite
(Gardner et al., 2017) for textual entailment.

Third, we have named entity recognition (NER),



using CoNLL-2003 (Sang and De Meulder, 2003;
Lin et al., 2020) as the ID dataset. For the OOD
dataset, we use OntoNotes v5.0 (Pradhan et al.,
2013). CoNLL-2003 contains only Reuters news
stories, while OntoNotes v5.0 contains text from
newswires, magazines, telephone conversations,
websites, and other sources.

4 Analysis Setup

After introducing the ER-TEST framework, we
conduct a systematic study of ER through three pri-
mary research questions (described below) using
ER-TEST. First, we aim to study which ER crite-
ria are effective for a given task at hand. Second,
we study ER from a resource constraint perspec-
tive, where only a handful of instances can have
human rationales annotated. What is key here is to
define how to select these instances for rationale
annotation (Section 4.2).

4.1 RQI: Which ER criteria are most effective?

Compared to existing works, ER-TEST uses a
wider range of ER criteria to evaluate ER model
generalization. This provides a more comprehen-
sive picture of ER’s impact on both ID and OOD
generalization. Also, this can help us understand
why certain criteria work well and under what set-
tings they work best. To demonstrate the utility
of ER-TEST, we consider five representative ER
criteria (i.e., choices of ®).

Mean Squared Error (MSE) MSE is used in
Liu and Avci (2019), Kennedy et al. (2020), and
Ross et al. (2017).

)

Dyise (B1, 1) = |85 — 4|3

Mean Absolute Error (MAE) MAE is used in
Rieger et al. (2020).

2

OMAE(Fi, i) = |B; — Ty

Binary Cross Entropy (BCE) BCE loss is used
in Chan et al. (2021).

n
Ppep(fi, 1) = — er log (7;)
t=1
Huber Loss Huber loss (Huber, 1992) is a hybrid
of MSE and MAE.

3)

(I)Huber (f'l ; I.'z)

Pyae(fi, 1) <6 (4)
16), otherwise

%qDMSE(f'u i),
O(Pmae(Fi, 1) —
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Order Loss Recall that the human rationale 1;
labels each token as positive (one) or negative
(zero). Whereas other criteria generally push pos-
itive/negative tokens’ importance scores to be as
high/low as possible, order loss (Huang et al., 2021)
relaxes MSE to merely enforce that all positive to-
kens’ importance scores are higher than all nega-
tive tokens’ importance scores. This is especially
useful if I; is somewhat noisy, e.g., some positively-
labeled tokens should not really be positive.

2
, 7y
Z (mln (U}ax ; 1,0)) 3)

At
Pt —
=1 =0

Dorder (T, )

rt

4.2 RQ2: How is ER affected by the
number/choice of train instances with
human rationales?

In real-world applications, it is infeasible to obtain
human rationales 1; for all of the instances in the
training set, as 1; requires dense annotation (Chiang
and Lee, 2022; Kaushik et al., 2019).

Let S be a subset of train instances for which we
have human rationale annotations, 1'“;-5 . Therefore,
the ER loss £ = ®(£¢,#F) and the full learn-
ing objective £ = Lk + Agg Lir» Where Lo i
computed on the full dataset as it would normally.

In designing such a system, one needs to care-
fully select S that leads to highest performance
gains, meanwhile maintaining resource constraints.
To select relevant samples to annotate, existing
methods use to active-learning based approaches
(Schroder and Niekler, 2020). We use ER-TEST
to compare three such approaches approaches to
select S:

Random Sampling Given a k, we uniformly se-
lect k% of samples from D to construct S.

Lower Confidence (LC) Sampling Given a k,
we select top £% of samples ordered on the basis
of the Lower Confidence criterion. (Zheng and
Padmanabhan, 2002)

max 1 — Po(gi|x;) (6)
where (24, ¥;) € Dyain, and 6 are the parameters
of a model trained on Dy, without ER. In other
words, these are the top k% examples that a model
trained without ER is the least confident on.

Higher Confidence (HC) Sampling Given a k,
we sample the top k% of samples ordered in the



Sentiment Analysis

NLI NER

ER Criteria In-Distribution Out-of-Distribution In-Distribution  Out-of-Distribution  In-Distribution — Out-of-Distribution

SST Amazon Yelp Movies e-SNLI MNLI CoNLL-2003 OntoNotes v5.0
None 94.22 (£0.77)  90.72 (£1.36)  92.07 (£2.66)  89.83 (£6.79)  76.18 (+£1.28) 46.15 (+4.38) 77.24 (+£0.20) 20.78 (+£0.41)
MSE 94.29 (£0.05)  90.58 (£0.77)  92.17 (£0.64)  90.00 (+£5.63)  78.98 (+1.00) 54.23 (+£2.67) 78.02 (+0.69) 21.60 (+0.46)
MAE 94.11 (£0.38)  92.02 (£0.25)° 94.55 (+£0.30)* 95.50 (+£1.32)* 78.77 (£1.01) 52.41 (+£4.50) 78.34 (+£0.81)° 21.73 (+£0.31)*
BCE 94.15 (£0.53)  90.70 (£1.19)  91.82(£2.30)  92.00 (£6.98)  79.07 (+0.83) 53.68 (+4.15) 64.53 (£13.22) 17.32 (£3.59)
Huber 94.19 (£0.19)  90.43 (£1.45)  92.38 (£2.11)  91.83 (£3.75)  78.99 (+£0.81) 53.97 (£3.11) 77.83 (£1.09) 21.38 (£0.16)
Order 94.37 (£0.11)°  89.47 (+£2.71)  87.95(£6.36)  84.50 (+10.15) 79.11 (+0.87)* 55.26 (+£3.56)* 72.62 (+£5.01) 19.14 (£1.75)

Table 1: ID/OOD Task Performance (Instance-Based Human Rationales). This table enlists the ID and OOD performance
of different ER criteria (MSE, MAE, BCE, Huber, Order) and compares them to a setting without ER (None). All models (with
or without ER) are trained on the ID dataset and evaluated on the ID and OOD datasets without the need of machine or human
rationales. Metrics displayed here (higher the better) for sentiment analysis is Accuracy and Macro F1 for NLI and NER. ¢ and %
correspond to cases where the ER criterion in bold are significantly similar and greater than None respectively (p < 0.05).

reverse order of lower confidence prioritisation as
described above. In other words, these are the top
k% examples that a model trained without ER is
the most confident on.

5 Experiments

5.1 Implementation Details

For the NLM architecture, we use BigBird-Base
(Zaheer et al., 2020), in order to handle input se-
quences of up to 4096 tokens. For all results, we
report the mean over three seeds, as well as the
standard deviation. By default, we use a learning
rate of 2e—5 and effective batch size of 32. For
ER, there are many possible choices of rationale ex-
tractor G, but evaluating all of these choices would
be prohibitive. Also, evaluating G is orthogonal to
ER-TEST’s goal of evaluating ER criteria ®. Thus,
as a proof of concept, we use the Input*Grad algo-
rithm (Denil et al., 2014) as G in all experiments,
given its popularity and computational efficiency
(Bastings and Filippova, 2020; Luo et al., 2021).
We leave investigation of other G for future work.

5.2 Intrinsic Evaluation of ER

ER in general is sensitive to certain hyperparam-
eters for yielding meaningful training curves and
actually attaining alignment between machine and
human rationales. Due to a large set of tunable
hyperparameters, running all configurations of ER
are not feasible. Therefore, we intrinsically eval-
uate hyperparameter configurations by assessing
the loss curves (which model alignment between
machine and human rationales) w.r.t different hy-
perparameters values. We observe that the accept-
able band of learning rates for ER is very narrow,
and we use 2e—>5 in all of our experiments. Fur-
thermore, we also observe that setting Agr = 1 and
~ver = 100 yields the most drop in the loss curves
while training, so we use these hyperparameters
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for the rest of our experiments. We detail these
experiments in Appendix A.1.

5.3 RQI: Which ER criteria are most effective?

5.3.1 1ID Generalization

In Table 1 (In-Distribution), we display the ID
task performance results for sentiment analysis
(SST), NLI (e-SNLI), and NER (CoNLL-2003).
For SST, we find that all of the ER criteria yield
about the same task performance as the None base-
line, whereas, all ER criteria also perform simi-
larly for NLI (yielding higher performance than
None). For NER, we see more variance in task per-
formance among ER criteria, although the variance
is still quite small among the best methods (MSE,
MAE, Huber). Here, MAE yields the highest task
performance, while BCE yields the lowest by far.
Overall, using ID task performance, it is difficult
to distinguish between ER criteria and underplays
its overall benefits. This motivates us to consider
other evaluation metrics.

5.3.2 OOD Generalization

Unseen Datasets In Table 1 (Out-of-
Distribution), we display the OOD task per-
formance results for sentiment analysis (Amazon,
Yelp, Movies), NLI (MNLI), and NER (OntoNotes
v5.0). For sentiment analysis, MAE yields
significant gains over all other ER criteria.
Meanwhile, despite performing best on SST,
Order performs much worse than all other ER
criteria here. For NER, MAE still performs best,
while MSE and Huber are competitive. Overall,
OOD task performance is much better than ID
at distinguishing between ER criteria, especially
showing ER’s improvement over None.

Contrast Set Tests In Table 2 (Contrast Set Anal-
ysis), we observe the drop in performance (denoted
by A) for sentiment analysis (Movies) and NLI
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Figure 3: Functional Tests’ Failure Rates (lower the better): We plot the failure rates of the four functional tests (vocab.,
robust., logic, entity) as described in Section 3.2.3, as well as the overall failure rate on all of the tests combined (mean). Each of
the values are out of 100, but plotted accordingly for visible comparison.

Contrast Set

ER Criteria Sentiment Analysis NLI
Original Contrast A Original Contrast A
None 88.39 (£2.05) 85.11 (£2.72) -328 46.15(+£4.38) 4373 (+£2.81) -2.42
MSE 88.11 (£2.33) 86.07 (£2.48) -2.04 5423 (£2.67) 51.95(£1.21) -2.28
MAE 91.12 (£0.59) 89.82 (£1.20) -130 52.41(£4.50) 52.02(+1.49) -0.39
BCE 89.55 (£1.42) 87.30(+4.03) -2.25 53.68(+4.15) 52.37(£1.42) -1.31
Huber 89.20 (+£1.67) 86.13 (£1.74) -3.15 53.97 (+3.11) 52.32(+£1.04) -1.65
Order 86.00 (£5.27) 83.40 (£6.16) -2.60 55.26 (£3.56) 52.78 (£0.74) -2.48

Table 2: Contrast Set Tests: Each ER criteria (F) are trained
on their ID datasets from Table 1 and evaluated on the OOD
original and contrast sets. A is the difference in performance
of F between the contrast and original set, and lower the value,
better the generalization power of F. A value farther from 0
suggests that F has learnt shortcuts specific a dataset, which
are not generalizable to task that the dataset captures.

(MNLI) when using a contrast set designed for the
given dataset. We observe that for both of the tasks,
MAE leads to the least drop in performance.

All of the methods apart from Order yield lower
drops than None. All of them also have a higher
performance on the original and contrast sets. For
sentiment analysis, we observe that Order has the
highest variance, and for NLI, it has the highest
drop in performance. Some of it can be attributed
to the soft-ranking that is imposed by Order, which
may be indifferent towards minor label-changing
edits, that is observed by the contrast sets.

Functional Tests Figure 3 demonstrates the fail-
ure rates on functional tests (as listed in Section
3.2.3) of our ID models trained on the sentiment
analysis and NLI tasks. We also present the overall
aggregated (over each individual tests within the
categories mentioned) failure rates.

We observe that apart from the entity-based tests,
ER criteria generally have a lower failure rate than
None for all of the other tests. For entity-based
tests, ER criteria either perform comparably (senti-
ment analysis) or worse (NLI) than None. Gener-
ally, all methods perform well on robustness-based
tests, as they have lower failure rates, with order
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loss having the least. What is important to note
is the significant improvement by order loss in
vocabulary-based tests than None, even though all
of the methods are exposed to the same training
set instances. We hypothesize that the biases in-
duced by ER alleviates the shortcuts learnt by None.
This is also validated by the overall performance
on all of these stress tests, where all of the ER cri-
teria (apart from Huber in sentiment analysis) have
lower failure rates than None.

5.4 RQ2: How is ER affected by the
number/choice of train instances with
human rationales?

Table 3 displays the results for our experiments on
varying the amount of human rationales available,
selected using different sampling methods. For
these experiments, we refer to the same training
and inference setup we have in Table 1 on senti-
ment analysis. Furthermore, all hyperparameters
are same as that detailed in Section 5.2.

5.4.1 1D Generalization

Consistent with the results we observed in Table
1, Table 3 shows us that there are little to no im-
provements in ID performance with prioritisation
methods, however performance for all of them (ex-
cept LC) is maintained at par with that of None and
100% sampling. This shows that doing ER on se-
lective samples does not degrade ID performance.

5.4.2 OOD Generalization (Unseen Datasets)

Interestingly, we observe distinctions within var-
ious prioritisation methods as we look at OOD
evaluations in Table 3. In lower-resource scenarios
(selecting only 5% samples for ER), all of the meth-
ods yield similar performance with each other, and
outperform None. This implies that doing ER on
a smaller subset of instances would instantly yield



Sentiment Analysis

k (in %) Selection Method In-Distribution Out-of-Distribution

SST Amazon Yelp Movies
None - 94.22 (£0.77)  90.72 (£1.36)  92.07 (£2.66)  89.83 (+6.79)
100 - 94.11 (£0.38)°  92.02 (£0.25)° 94.55 (£0.30)* 95.50 (+1.32)*
Random 94.36 (£0.05)  91.57 (£0.10)  93.36 (£0.15)  92.39 (+2.50)
5 LC 93.14 (£1.97)  90.72 (£0.43)  93.50 (£0.53)  93.17 (+1.26)
HC 94.32 (£0.42)*  91.57 (£0.19)* 93.03 (£0.81)*  91.33 (+3.09)
Random 94.46 (£0.21)  90.06 (£1.17)  90.81 (£2.63)  86.22 (+£2.94)
15 LC 93.48 (£0.80)  90.12 (£2.66)  90.90 (£5.30) 83.67 (£14.02)
HC 94.39 (£0.27)*  90.38 (£1.12)* 93.48 (£0.64)* 91.33 (£5.11)*
Random 93.47 (£0.02)  90.28 (+1.42)  91.85(£2.11)  89.78 (+5.68)
50 LC 89.92 (£1.90)  90.75 (£0.78)  93.05 (+£0.14)  87.50 (£4.95)
HC 92.93 (£0.17)7  92.15 (£0.36)*  94.48 (£0.94)*  91.00 (£6.50)*

Table 3: Instance Prioritisation Methods (with ID/OOD Performance): All values are accuracy (higher the better) on
sentiment analysis. None corresponds to models trained without ER, where k& = 100% corresponds to no annotation budget.
Each of the & = [5,15,50]% have 3 instance prioritisation methods. o corresponds to cases where HC and Random are
significantly similar and greater than LC. * corresponds to cases where HC is significantly greater than Random and greater than
LC. e corresponds to cases where all the three methods are significantly similar.c and x correspond to cases where the 100% ER
setup is significantly similar and greater than None respectively. All tests are conducted with (p < 0.05).

small improvements over None. As we increase
the annotation budget, we observe that model per-
formance declines as we select lower confidence
samples, but is maintained or even improves over
random while selecting instances with greater con-
fidence. It is important to reiterate here, that sam-
ples are prioritized based on the confidence yielded
by the None model. This implies that models in
general require inductive biases on samples they
are already confident on, vs. samples they are less
confident on to avoid confusion.

6 Related Work

ER Criteria ER criteria primarily differ in how
they obtain human rationale ; and how they com-
pute machine-human rationale alignment ®(%;, ;).
First, I; can be obtained by annotating each train-
ing instance individually (Zaidan and Eisner, 2008;
Lin et al., 2020; Camburu et al., 2018; Rajani et al.,
2019; DeYoung et al., 2019) or by applying domain-
level human priors across all training instances
(Rieger et al., 2020; Ross et al., 2017; Ghaeini et al.,
2019; Kennedy et al., 2020; Liu and Avci, 2019).
The former approach is more expensive, while the
latter approach has more limited applicability since
it requires domain knowledge. Second, existing
choices of ® include MSE (Liu and Avci, 2019;
Kennedy et al., 2020; Ross et al., 2017), MAE
(Rieger et al., 2020), BCE (Chan et al., 2021), or-
der loss (Huang et al., 2021), and KL divergence
(Chan et al., 2021). Currently, there is little under-
standing about how these ER design choices impact
OOD generalization, so ER-TEST aims to provide
a testbed for conducting such analysis. Beyond ER,

Hase and Bansal (2021) presents a more general
study about how models can learn from explana-
tions, claiming that explanations are best used as
model inputs.

Evaluating ER Criteria Existing works have pri-
marily evaluated ER models via ID generalization
(Zaidan and Eisner, 2008; Lin et al., 2020; Huang
et al., 2021), which only captures one aspect of
ER’s impact. Meanwhile, a few works have consid-
ered auxiliary evaluations — e.g., machine-human
rationale alignment (Huang et al., 2021; Ghaeini
et al., 2019), task performance on unseen datasets
(Ross et al., 2017; Kennedy et al., 2020), social
group fairness (Rieger et al., 2020; Liu and Avci,
2019). However, such evaluations are uncommon
and relatively small-scale, only covering a narrow
range of OOD generalization aspects, ER crite-
ria, tasks, and datasets. These limitations make it
difficult to thoroughly compare ER criteria, ana-
lyzing why they work and when they work best.
To address these limitations, ER-TEST provides a
unified benchmark for evaluating multiple aspects
of OOD generalization.
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A Appendix

A.1 Intrinsic Evaluation: evaluating ER’s
sensitivity to hyperparameters

When using ER to train JF, it is important to assess
whether ER exhibits expected training behavior,
orthogonally to task performance. If ER improves
task performance, this kind of analysis can help us
better understand ER’s effectiveness. Conversely,
if ER does not improve task performance, such
analysis can help us identify the problem.

Motivated by this, ER-TEST’s intrinsic evalua-
tion is based on machine-human rationale align-
ment, captured by the ER loss Lpr = (T, ).
When using ER, we should generally expect the
ER loss to decrease as JF is trained. In practice, this
may not always be the case, even when ER leads
to slightly higher task performance (which is likely
a mirage caused by lucky random seeds)! That
is, by definition, non-decreasing ER loss signals
ineffective ER usage, since the machine rationales
are not becoming more similar to the human ratio-
nales. This can stem from a number of issues: e.g.,
poor choice of ER criteria ®, improper ER strength
AER, improper rationale scaling factor yggr, noisy
human rationale 1;, insufficient F capacity. Thus,
we measure machine-human rationale alignment as
the first step in diagnosing such issues.

Let ER loss curve denote a chart which plots
Lgr vs. the number of train epochs. For each
combination of ER criteria & and some training
configuration, we plot ER loss curves for the train-
ing set. Each component of our intrinsic evaluation
varies a different hyperparameter in the training
configuration: (A) ER strength A\ggr; (B) rationale
scaling factor ygr; and (C) learning rate . In con-
trast, prior works do not explore the relationship
between Lggr and these training variables (Huang
et al., 2021; Ghaeini et al., 2019).

For intrinsic evaluation, we use ER strength
Agr = 1, rationale scaling factor ygg = 1, and
learning rate o = 2e—>5, unless otherwise speci-
fied. As a proof of concept, we focus on SST here,
but plan to add other datasets in future work.

A.1.1 ER Strength

Fig. 5 displays the ER loss curves for different
ER strengths Agr = [0.5,1, 10,100, 300], on SST
using MAE. Among the Agr values, we see that
Aer = 1 yields ER loss curves with the greatest de-
crease (Table 5), signaling good ER optimization.
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Figure 4: ER Loss Curves (Rationale Scaling Factor).

Rationale Scaling Factor
ER criteria 1 10 100 1000

MSE 0.69 4.60 1835 11.41
MAE 0.04 040 129 1.17
BCE 0.10 034 090 1.03
Huber 0.10 7.75 16.67 9.30
Order 721 938 4797 1.89

Table 4: Relative Decrease in ER Loss. For various
ER rationale scaling factors, we report the percentage
decrease in ER train loss (on SST), from max point to
min point.

ER Strength
ER criteria 0.5 1 10 100 300

MSE 091 1.52 141 129 135
MAE 1.89 2.01 172 180 1.74
BCE 1.99 217 165 1.65 1.75
Huber 1.85 2.09 224 227 240
Order 215 240 1.60 253 1.89

Table 5: Relative Decrease in ER Loss. For various
ER strengths, we report the percentage decrease in ER
train loss (on SST), from max point to min point.

A.1.2 Rationale Scaling Factor

Fig. 4 displays the ER loss curves for different
rationale scale factors ygr = [1, 10,100, 1000],
on SST. Among the four ygr values, we see that
ver = 100 yields ER loss curves with the greatest

decrease (Table 4), signaling good ER optimization.

Meanwhile, although ER works use ygr = 1 by
default, we see that ygr = 1 yields nearly flat ER
loss curves for all five ® choices. This suggests
poor ER optimization. Based on these results, we
fix ygr = 100 for all experiments (Sec. 5), thus
greatly reducing the hyperparameter search space
(Sec. A.3).

A.1.3 Learning Rate

Here, we obtain similar conclusions, with a =

2e—5 yielding the best ER loss curves (Sec. A.1.4).

A.1.4 Learning Rate

Fig. 6 displays the ER loss curves for different
learning rates o = [2e—6, 2e—5, 2e—4]. Among
the three learning rates, we see that « = 2e—5
yields the most steadily decreasing ER loss curves.

A.2 ER performance with different
hyperparameters

ER Strength vs. Task Performance To measure
ER’s impact on task performance, we plot /s task
performance as a function of ER strength Agg. This
is conducted for ID test sets.

ER Loss vs. Task Performance To measure
ER’s impact on task performance, we plot F’s task
performance as a function of ER loss Lggr. This is
conducted for both ID and OOD test sets.

Change in Target Class Confidence Let Fyo.gR
and Jgr denote non-ER-trained (vanilla) and ER-
trained NLMs, respectively. For each test instance,
we plot Fno.gr’S predicted target class confidence
probability vs. Fgr’s. Each point in the plot is
color-coded by whether ER changes the prediction
from correct to incorrect, changes the prediction
from incorrect to correct, keeps the prediction as
correct, or keeps the prediction as incorrect. The
purpose of this plot is to visualize how individ-
ual instances’ predictions are affected by ER. We
conduct this for ID dev sets.

A.2.1 ER Strength vs. Task Performance

For each sentiment analysis dataset, Fig. 7
shows task performance for ER strengths Agr =
[0,0.5,1,10,100,300], using MAE. Note that
Agr = 0 is equivalent to training the NLM with-
out ER (i.e., None in Table 1). For the ID dataset
(SST), we see that all ER strengths yield very sim-
ilar task performance, suggesting that ER has lit-
tle effect on ID task performance. However, for
the OOD datasets (Amazon, Yelp, Movies), task
performance generally increases as Agr increases,
showing ER’s positive impact on NLM generaliza-
tion. Overall, based on OOD task performance, we
find that A\ggr = [1, 100] are the best ER strengths.
This aligns with the results of Sec. A.1.1.

A.2.2 ER Loss vs. Task Performance

Fig. 8 displays the SST results for ID task perfor-
mance (accuracy) vs. ER loss. For a given ER cri-
terion, each point in the corresponding scatter plot
represents the checkpoint at some train epoch of the
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Figure 5: ER Loss Curves (ER Strength). Here, we use the MAE criterion.
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Figure 7: ER Strength vs. Task Performance. For
various combinations of sentiment analysis dataset and
ER strength, we plot task performance using MAE.

ER-trained model, evaluated on either the dev set or
test set (yielding two point sets). Fitting each point
set with linear regression, we find that there is an
inverse relationship between task performance and
ER loss. In other words, higher machine-human ra-
tionale alignment (i.e., low ER loss) corresponds to
higher task performance, which validates the usage
of ER to improve generalization. Table 6 displays
the slopes and R? scores of the lines in Fig. 8.
The slope indicates the strength of the relationship
between machine-human rationale alignment and
task performance (lower is better), while the R?
score indicates how accurately each line fits its cor-
responding data points. Among the five ER criteria,
across dev and test, we find that MAE has the low-
est slopes and highest R? scores overall, suggesting
that using ER with MAE is most effective.

A.2.3 Change in Target Class Confidence

We consider ER with the MAE criterion,
trained/evaluated on SST (via dev ID task perfor-
mance). Fig. 9 visualizes how ER changes each dev
instance’s target class confidence as a result of ER,
color-coding each point w.r.t. how ER changes the
model’s predicted class for this point. Among in-

the line plots in Fig. 8 (ER Loss vs. Task Performance), using
slope and R? score (Sec. A.2.2). Ideally, Fig. 8’s lines would
have low slope and high R?, indicating that ER helps improve
task performance. We see that MAE yields the best ER results.

Percentage of Dev Instances in incor— cor Group, Binned by 7y, gr Target Class Confidence
0.0-0.1 0.1-02 0.2-0.3 0.3-04 04-05 0.5-06 06-0.7 0.7-0.8 08-09 09-1.0

2285 2600 4038 4920 2878 0.00 0.00 0.00 0.00 0.00

Table 7: Change in Target Class Confidence. For bins
where Fno-Er’s target class confidence is low, there is a higher
percentage of instances that are predicted incorrectly/correctly
without/with ER. This suggests that instances with low target
class confidence are more likely to benefit from ER.

stances for which Fno.gr’s target class confidence
is low, there is a higher percentage of instances that
are predicted incorrectly/correctly without/with ER
(i.e., incor—cor). This suggests that, for Fno.gr,
instances with low target class confidence are more
likely to benefit from ER (Table 7). Also, based on
the T-test, target class confidence scores are signifi-
cantly higher (p < 0.005) with ER than without.

A.2.4 ER Opportunity Cost

An ER-trained NLM Fi,¢ gr and a non-ER-trained
NLM Fiask, No-ER are likely to yield different out-
puts given the same inputs. Let DER C D and
D§0_ER C D denote the sets of instances pre-
dicted correctly by Fiask, ER and Fiask, No-ER, I€SpeC-
tively. Ideally, we would have D§O_ER C DEFR.
This means there is no opportunity cost in us-
ing ER, as ER increases the number of correct
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instances without turning any previously-correct
incorrect. However, this may not necessarily be
the case, so we measure ER’s opportunity cost
as follows. Let nfy = |Dix\(Dix N Dy gr)!
be the number of instances predicted correctly by
-Ftask, ER, but not by ]:task, No-ER. Let n;I_O-ER =
1D er \(Progr N Dir)| be the number of in-
stances predicted correctly by Fiask. No-ER, but not
by Fisk, Er. Then, the opportunity cost of using
ER is defined as:

+ +
n —-n
OFR = W (7)

In practice, instead of defining ogg for all of D, we
only consider test sets Diegr and f)test.

Table 8 displays the opportunity cost results for
sentiment analysis. Generally, the opportunity cost
results mirror the task performance results in Table
1, such that the methods with highest task perfor-
mance tend to have the lowest opportunity cost.
However, using opportunity cost, the variance is
very high for OOD datasets, making it difficult
to compare methods. In future work, we plan to
modify the opportunity cost metrics to better ac-
commodate OOD settings.

A.3 Efficient hyperparameter tuning with
ER-TEST

In intrinsic evaluation (Sec. A.1), we used ER loss
curves as priors for selecting three key ER hyper-
parameters (i.e., ER strength Agg, rationale scaling
factor ygR, learning rate ). In Sec. 5, we assumed
a tuning budget that allows only one value for each

Sentiment Analysis

ER criteria  In-Domain Out-of-Domain
SST Amazon Yelp Movies
None 0.00 (£0.00)  0.00 (£0.00)  0.00 (£0.00) 0.00 (£0.00)
MSE 0.32(£1.05) -1.25(+1.20) -2.33(+4.64) -6.50 (£40.66)
MAE -0.09 (£0.24) -0.58 (£3.45) -0.94 (£11.21) -7.00 (+40.66)
BCE -0.16 (£0.33)  0.46 (£4.11)  0.96 (£26.99)  0.16 (£47.72)
Huber 0.12 (£0.42)  0.19(£2.25) -1.05(+4.11) -4.33 (£37.72)
Order 1.90 (£1.38)  6.98 (+3.87) 19.86 (+45.54) 21.66 (+£35.72)

Table 8: ID/OOD Opportunity Cost. Lower values are
better.

of Agr, VER, and «. By not tuning these hyperpa-
rameters, we greatly reduced our hyperparameter
search space. Since ER has little effect on ID task
performance, tuning based on ID task performance
is unlikely to have helped anyway. ER works better
on OOD data, but it also does not make sense to
tune based on OOD task performance (otherwise,
it would not be OOD). Though the ER hyperpa-
rameters chosen via intrinsic evaluation generally
improved OOD task performance, we seek to ver-
ify their effectiveness compared to other possible
hyperparameter values.

In Table 9 (in the appendix), we report senti-
ment analysis OOD (Amazon, Yelp, Movies) task
performance, while varying each of the three hy-
perparameters. We include a Mean column, which
averages the Amazon/Yelp/Movies columns. Our
hyperparameters chosen via ER loss curves are
highlighted in blue . For Agg, 1 (ours) and 100
yield very similar Mean results, while consider-
ably beating the other three values. For yggr, we
see the same trend for 100 (ours) and 10. For «,
2e—5 (ours) vastly outperforms other values in all
columns. These results validate the utility of ER-
TEST’s intrinsic evaluation for low-resource ER
hyperparameter tuning.

A.4 Details for Functional Tests

In this section, we provide details for different func-
tional tests listen in Section 3.2.3. We breakdown
each subcategory of functional tests and show per-
formances of different ER criteria on those indi-
vidual tests. For functional tests on the sentiment
analysis task, refer to Table 10. NLI functional
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Sentiment Analysis (Out-of-Domain)

ER criteria Amazon Yelp Movies Mean
None 90.72 (£1.36)  92.07 (£2.66)  89.83 (£6.79) XX.XX (£X.XX)

MAE (Agr = 0.5)  90.12 (£2.98)  92.27 (+£3.29)  92.00 (£5.68) 91.46 (£0.91)
MAE (Agr = 1) 92.02 (£0.25)  94.55 (+0.30)  95.50 (£1.32) 94.02 (+2.15)
MAE (Agr = 10)  91.27 (£0.28)  93.10 (+1.08)  90.67 (£3.79) 91.68 (£1.06)
MAE (Agr = 100)  92.33 (£0.28)  94.92 (+0.56)  95.50 (+0.50) 94.25 (+1.89)
MAE (Agr = 300) 91.83(+0.42) 93.97 (£1.28) 95.00 (+0.50) 93.60 (£1.74)
MAE (ygr = 1) 90.63 (£1.88)  92.32(+2.23) 88.67 (£4.25) 90.54 (£2.22)
MAE (e = 10) 9230 (£1.21)  93.01 (+2.14)  96.83 (£1.04) 94.07 (+3.89)
MAE (9gr = 100)  92.02 (£0.25)  94.55 (£0.30)  95.50 (£1.32) 94.02 (£2.15)
MAE (ygr = 1000)  90.47 (£2.06)  92.80 (£2.90)  92.67 (£6.25) 91.98 (£1.14)
MAE (o = 2e—4)  89.35(4£2.85) 91.23 (£2.84) 93.00 (+2.65) 91.19 (£2.22)
MAE (o = 2e—5)  92.02(+0.25) 94.55 (£0.30) 95.50 (+1.32) 94.02 (+2.15)
MAE (o = 2e—6)  88.60 (+£1.60) 83.27 (£6.49) 81.17 (£6.93) 84.34 (£9.70)

Table 9: Task Performance vs. {ER Strength (\gr), Ratio-
nale Scaling Factor (ygr)}. Higher values are better.

tests are listed in Table 11.

A.5 Details for Instance Prioritisation
Experiments

In this section, we provide further implementation
details for confidence-based instance prioritisation
experiments as described in Section 4.2.

Given that we have 3-seed runs for the None
model in Table 1, we extract the confidence scores
based on the given metric (LC or HC), and then av-
erage these confidence scores across the 3 seed runs
to obtain a single score for every instance. This
process is done for training set instances only. This
is followed by ranking each instance by the aggre-
gated confidence metric and selecting the top k%
of samples from this ranking. For experiments with
random sampling based prioritisation, we generate
3 random subsets selected in a uniform manner.

While training in this setting, we ensure that
within each batch, certain (one third to be specific)
set of instances have available rationales. For these
instances, we calculate the ER loss Lggr, whereas,
for the rest of the instances in the batch, we com-
pute the task loss L. All prioritisation settings
are trained with 3 different model seeds and the
aggregated results for ID and OOD datasets are
shown in Table 3.

A.6 Time-based Rationale Annotation Cost

Current experiments in selecting instances for ER
detailed in Section 5.4 are based on the assumption
that each instance takes the same amount of time
to annotate. Furthermore, in order to effectively
comment about the improvements made by ER
under constrained scenarios, there needs to be a
comparison between the time taken to annotate
explanations (Yao et al., 2021) vs. the time taken to
label new training instances, that we aim to evaluate
using ER-TEST.

A.7 Online ER and connections to
human-in-the-loop learning

Fine-tuning strategies have shown to distort the
underlying data distribution (Kumar et al., 2022),
therefore, once F undergoes ER, its machine ra-
tionales differ from before. Currently, ER is being
studied in an offline manner — once human ratio-
nales are collected, they are used to update model
weights. However, what is more effective is to
study the effect of ER when applied incrementally,
thus improving rationale alignment.

A.8 Additional Analysis: Is ER effective with
distantly supervised human rationales?

A.8.1 Tasks and Datasets

Typically, human rationales are created by annotat-
ing each training instance individually (Lin et al.,
2020; Camburu et al., 2018; Rajani et al., 2019).
For each training instance, humans are asked to
mark tokens that support the gold label as positive,
while the remaining tokens are marked as negative.
Here, each human rationale is specifically condi-
tioned on the input and gold label for the given
instance. However, such instance-level human ra-
tionales are very expensive to obtain, given the high
manual effort per instance.

Alternatively, some works have constructed dis-
tantly supervised human rationales by applying
task-level human priors across all training instances
(Kennedy et al., 2020; Rieger et al., 2020; Ross
et al., 2017; Liu and Avci, 2019). For example,
Kennedy et al. (2020) used a “blacklist” lexicon to
distantly supervise human rationales for the hate
speech detection task. In the past, hate speech
detection models were largely oversensitive to cer-
tain group identifier words (e.g., “black”, “Mus-
lim”, “gay”), almost always predicting hate speech
for text containing these words. To address this,
they first manually annotated a lexicon of group
identifiers that should be ignored for hate speech
detection. Then, for all training instances, they au-
tomatically marked only tokens belonging to the
lexicon as negative (and the rest as positive). By
using these human rationales for ER, they trained
the NLM to be less biased w.r.t. these group iden-
tifiers. For the purpose of our study, we use the
lexicons as used by (Jin et al., 2021) to generate
distantly-supervised rationales for the Stormfromt
(Stf) dataset (de Gibert et al., 2018). Each instance
in the Stf dataset is matched to one or more lexi-
cons by simple character-level matching, and the
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ER criteria

Capability Test Type
None MSE MAE BCE Huber Order
Sentiment-laden words in context 1.20 (£0.74) 0.60 (+0.16) 1.27 (£0.84) 1.00 (£0.86) 1.13 (£0.50) 0.80 (+0.28)
Change Neutral words with BERT 5.59 (£0.16) 5.13 (£0.90) 5.40 (£0.28) 5.67 (£0.68) 5.67 (£0.74) 5.60 (+1.63)
Vocabular Intensifiers 2.13 (£1.63) 1.80 (£+0.16) 1.40 (£0.16) 2.67 (£0.77) 2.67 (£0.96) 1.60 (+0.65)
y Reducers 23.85 (£7.18) 35.00 (£46.01) 2738 (+£5.95) 25.00 (£25.00) 17.46 (+13.65)  0.77 (+£0.43)
Add +ve phrases 1.40 (£0.28) 2.33 (+1.84) 0.67 (+0.50) 1.27 (£1.00) 2.33 (£1.76) 2.07 (£1.52)
Add -ve phrases 22.86 (£7.43) 14.80(£1.40)  20.67 (£4.07) 17.40 (£3.64)  20.67 (£3.35) 16.93 (£1.91)
Adding Random URLs and Handles 9.80 (£0.48) 7.27 (£2.23) 9.07 (+1.80) 7.87 (£2.76) 10.27 (£0.9) 9.6 (+2.47)
Punctuations 3.93 (£0.89) 1.93 (£0.41) 3.00 (£1.02) 2.87 (£0.19) 3.80 (£0.28) 2.67 (£0.34)
Robustness Typos 2.60 (£0.90) 2.53 (+0.82) 2.60 (+0.57) 3.13 (£0.90) 2.60 (£0.75) 2.00 (£0.86)
2 Typos 3.93 (£0.65) 3.87 (£1.24) 4.27 (£0.5) 4.13 (£1.2) 4.6 (£0.43) 3.33 (£0.25)
Contractions 1.00 (£0.00)  0.80(£0.33)  0.87 (£0.25)  0.80 (£0.43)  0.47(£0.09)  0.53 (£0.50)
Negatives 5.20 (£2.75) 4.27 (£1.65) 4.47 (£3.07) 447 (£1.75) 3.93 (£1.57) 5.67 (£1.68)
Logic Non-negatives 59.73 (+£9.48) 59.00 (£15.81) 37.47 (£10.41) 6327 (£17.61) 59.07 (+£14.97) 45.87 (+24.13)
Negation of positive with neutral stuff in the middle 32.2 (£14.65)  35.13 (£1.91) 35.00 (£16.52)  19.00 (£8.66)  40.93 (£4.31)  29.13 (£10.60)
Change Names 0.70 (£0.14 1.91 (£0.71) 1.11 (£0.51) 0.81 (£0.14) 1.61 (£0.62) 1.91 (£1.51)
Entity Change Locations 3.33 (£0.74) 2.73 (£1.15) 3.40 (£0.86) 3.07 (£1.79) 3.00 (£0.33) 3.20 (£1.57)
Change Numbers 0.80 (£0.00) 0.53 (+0.34) 0.47 (£0.41) 0.60 (£0.33) 0.60 (+0.43) 0.67 (+0.81)
Table 10: Functional Tests: Sentiment Analysis
Capability Test Type ER criteria
None MSE MAE BCE Huber Order
Antonym in Hypothesis 71.66 (£20.98) 64.77 (£21.97) 84.55 (£11.53) 65.88 (£21.40) 74.77 (£20.41) 62.55 (+£13.16)
Vocabulary Synonym in Hypothesis 32,61 (£7.41) 24.11(£7.62)  30.11 (£6.42) 25.88 (+£6.86)  30.77 (£7.07)  29.27 (£6.95)
Supertype in Hypothesis 24.44 (£15.95) 11.00 (£3.62) 13.77 (£6.71) 9.31 (£5.90) 8.77 (£8.06) 13.55 (£7.10)
Punctuation 14.55 (+4.13) 9.44 (£2.79) 11.33 (£1.63) 8.11 (£1.19) 10.00 (£+2.58) 9.88 (+2.51)
Robustness Typo 15.88 (£3.44)  10.22 (£3.04)  12.33 (£1.63) 9.66 (£2.10) 10.88 (£2.68)  10.77 (£2.52)
2 Typos 1533 (£3.68)  9.77 (£1.81)  12.00 (£1.76)  9.44 (£2.31)  11.11(£2.99)  10.00 (+2.66)
Contractions 24.69 (£6.98)  24.69 (£8.72)  25.92(£9.07)  22.22(£9.07) 2592 (+£7.40)  14.81 (£5.23)
Negation in the Hypothesis 50.88 (£32.25) 27.77 (£37.24) 9.77 (£15.66) 41.33 (£41.54) 1522 (£28.77) 18.44 (£23.21)
Logic Induce Contradiction 99.88 (+£0.31)  98.54 (£3.78)  91.69 (£20.37)  98.65 (£2.56)  98.42 (+4.44)  99.88 (+0.31)
Same Premise and Hypothesis 1422 (£8.63) 14.33 (£10.14) 19.44 (£12.12) 18.16 (£12.69) 14.38 (£9.23) 17.38 (£10.16)
Entity Switch one Entity in the Hypothesis ~ 77.21 (+£39.57) 88.88 (+24.11) 79.91 (£22.20) 85.18 (+30.04) 83.83 (£24.25) 96.40 (£4.85)

Table 11:

rationales are generated as described above. We
evaluate ER methods on OOD hate speech detec-
tion datasets like HatEval (Barbieri et al., 2020) and
Gab Hate Corpus (GHC) (Kennedy et al., 2018).
All of the datasets contain binary labels for hateful
and non-hateful content. The Stf dataset is col-
lected from a white-supremacist forum, whereas
HatEval instances are tweets and GHC instances
are taken from the Gab forum.

A.8.2 Method

In Section 4.2, we enforce constraints in the num-
ber of instances to annotate with human rationales,
and use ER-TEST to compare different strategies
to select such instances. However, annotating each
token within each instance is also an expensive task,
as described in Section A.8. One way to overcome
this issue is generate human rationales with distant
supervision.

Let Lp be a list of lexicons curated by human
annotators, specific to a given dataset D. Let [(+)
be an indicator function that searches for a given
lexicon list in all the tokens of an instance, and

Functional Tests: NLI

returns a binary representation of the same size as
the instance with 1s in places with lexicon matches
(0 otherwise). Therefore, we can obtain distantly-
supervised human rationales r; = 1 — [(Lp, z;).
We can then study the effectiveness of ER methods
as detailed in RQ1 (Section 4.1) in this setting.

A.8.3 Experiments

ID Generalization For the task of hate speech
detection, we train J with the Stf dataset. We re-
port all accuracies in Table 12. As it was observed
in Section 5.3.1, ER does not lead to a significant
improvement in performance for the Stf test set.
However, it is important to note that “blacklisting”
group identifier lexicons does not lead to a drop in
ID performance either. Benefits of “blacklisting”
are then observed in OOD generalization.

OOD Generalization

Unseen Datasets We evaluate 7 on two OOD
datasets, HatEval and GHC. Table 12 shows that
while the improvements in HatEval are not signifi-
cant, there are significant accuracy improvements
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Hate Speech Detection

In-Distribution

Out-of-Distribution

ER Criteria
Stf HatEval GHC
Accuracy T FPRD | Accuracy T FPRD | Accuracy 1 FPRD |
None 89.50 (£0.20) 1.11(£0.58) 63.68 (£0.78) 1.64 (£0.66) 89.43 (+£0.98) 1.09 (£0.12)
MSE 89.46 (£0.21) 2.18(+£0.47) 64.30 (+£1.52) 1.99 (£0.26) 88.19 (+£0.62) 1.50 (+0.10)
MAE 89.59 (£0.06) 1.39 (£0.62) 63.30 (£0.49) 1.80 (+0.59) 88.07 (£1.66) 1.43 (+0.24)
BCE 89.42 (£0.71) 1.87 (£0.45) 63.54 (£0.57) 1.87 (£0.45) 88.99 (+£0.83) 1.36 (+0.58)
Huber 89.50 (£0.51) 1.90 (£0.35) 64.85 (+£1.50) 2.11(£0.27) 87.77 (£1.21) 1.84 (+0.34)
Order 89.21 (£1.18) 0.56 (£0.09) 64.46(£1.18) 0.92 (£0.92) 92.84 (+0.46) 0.59 (£0.25)

Table 12: ID/OOD Task Performance (Distantly-supervised Human Rationales): Higher values for accuracy and lower
values for FPRD are considered better. All models displayed are trained on the ID dataset (Stf) with distantly supervised

rationales (for ER criteria) and no rationales (for None) and evaluated on ID and OOD test splits.

for the GHC test set, which are due to the Order
ER criterion.

Fairness Tests In addition to generic perfor-
mance metrics like accuracy, we also measure
group identifier bias (against the groups detailed
by group identifier lexicons) by evaluating the
False Positive Rate Difference (FPRD) as shown
by (Jin et al., 2021). FPRD is computed as
>, |FPR; — FPRyyeranl|, Where FPR; is the false
positive rate of all of the test instances mentioning
group identifier z, and FPRyyerq 18 the false posi-
tive rate of all the test instance. Essentially, FPRD
evaluates if F is more biased against a given group
identifier 2, than all of the groups. A lower FPRD
value indicates less biased against the listed group
identifiers by F.

Table 12 lists the FPRD values of all the ER cri-
teria in ID and OOD datasets. While all other crite-
ria suffer with higher bias than None, we observe
that Order criterion consistently leads to the least
bias, both in-distribution and out-of-distribution.
Furthermore, the reduction in bias is significant
when compared to None. Interestingly, Order
ER criterion was initially conceived for distantly-
supervised rationales (Huang et al., 2021), and the
authors of the original paper also demonstrated ex-
periments with rationales generated from lexicons
where Order criterion leads to improvements. Our
observations are in-line with theirs, and we also
show its benefit in reducing bias in F.
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