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Abstract

In the past few years, the field of text simplifica-
tion has been dominated by supervised learning
approaches thanks to the appearance of large
parallel datasets such as Wikilarge and Newsela.
However, these datasets suffer from sentence
pairs with factuality errors which compromise
the models’ performance. In this study we pro-
posed a model-independent factuality error de-
tection mechanism, considering bad simplifica-
tion and bad alignment, to refine the Wikilarge
dataset through reducing the weight of these
samples during training. We demonstrated that
this approach improved the performance of the
state-of-the-art text simplification model TST5
by an FKGL reduction of 0.33 and 0.29 on the
TurkCorpus and ASSET testing datasets respec-
tively. Our study illustrates the impact of erro-
neous samples in TS datasets and highlights the
need for automatic methods to improve their
quality.

1 Introduction

Text simplification (TS) is a Natural Language Pro-
cessing (NLP) task that considers the reduction of
text’s complexity towards increasing its readability
and understandability while retaining its original
meaning. TS can increase the accessibility of in-
formation to a wider audience, including young-
sters, those with little literacy, people who are not
native speakers, the elderly, and people with dis-
abilities (Inui et al., 2003; Petersen and Ostendorf,
2007; De Belder and Moens, 2010; Suominen et al.,
2013). Additionally, numerous studies have also
demonstrated that TS can support other NLP tasks
as a preprocessing step (Chen et al., 2012; Chatter-
jee and Agarwal, 2022).

The current TS domain (Zhang and Lapata,
2017; Martin et al., 2020; Omelianchuk et al.,
2021) is dominated by fine tuning large sequence-
to-sequence language models on existing parallel
datasets, the main ones being Wikilarge (Zhang

and Lapata, 2017) and Newsela (Xu et al., 2015).
However, several studies have revealed that these
training datasets suffer from factuality errors. (Xu
et al., 2015; Devaraj et al., 2022) Factuality errors
occur when the samples provided do not accurately
or properly represent the task. In the TS context,
two main sources of factuality errors are bad align-
ment, i.e., loss of content preservation, and bad
simplification, i.e., the target sentence is not sim-
pler than the source (Xu et al., 2015). The existence
of parallel training samples with factuality errors
can impact significantly the performance of the TS
models.

In this study, we investigated methods to detect
parallel samples with factuality errors in the Wiki-
large dataset. We explored the impact of decreasing
the loss weight of the detected samples during train-
ing in the TS task performance. We re-trained the
state-of-the-art (SOTA) TS model TST5 (Sheang
and Saggion, 2021) using the modified Wikilarge
dataset and observed a significant performance im-
provement when tested on the TurkCorpus and AS-
SET datasets.

2 Related Work

2.1 Text simplification

Text simplification is mostly treated as a monolin-
gual translation problem based on existing parallel
datasets including Wikilarge and Newsela. While
previous models focused on using statistical ma-
chine translation (SMT) approaches (Coster and
Kauchak, 2011; Wubben et al., 2012; Štajner et al.,
2015), current work focuses on using neural ma-
chine translation (NMT) approaches (Nisioi et al.,
2017; Shen et al., 2017; Zhao et al., 2018; Martin
et al., 2020). The Neural Text Simplification (NTS)
model proposed by Nisioi et al. (2017) is one of the
earliest attempts to apply NMT on TS and showed
better performance than other SMT models at that
time. After the release of transformers, Zhao et al.
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Bad Alignment Complex: They take up oxygen in the lungs or gills and release it while
squeezing through the body ’s capillaries .
Simple: Red blood cells are very large in number ; in women , there are
4.8 million red blood cells per microliter of blood .

Bad Simplification Complex: He travelled to Brittany in 1928 to study stone crosses and
publish As Cruces de Pedra na Bretaña .
Simple: Two years later he published Cousas , and in 1929 he travelled
to Brittany to study its stone crosses and publish As Cruces de Pedra na
Bretaña .

Real Simplification Complex: In September 1869 , O’Reilly escaped and was rescued by an
American ship .
Simple: In September 1869 , O’Reilly escaped with help from an Ameri-
can ship .

Table 1: Examples of bad alignment, bad simplification and real simplification in Wikilarge.

(2018) implemented it in their model DCSS and
achieved the SOTA performance, highlighting the
promising capability of the transformers framework
for TS.

Recently, the addition of control tokens was
shown to significantly improve the TS models.
Martin et al. (2020) proposed one of the currently
benchmark models, named ACCESS. Their model
included four tokens to control the amount of com-
pression, paraphrase, lexical, and syntactical com-
plexity separately. Later, Sheang and Saggion
(2021) improved this method by adding one more
token to control the change of sentence length and
fine tuning on the pretrained language model T5
(Raffel et al., 2020), resulting in the TST5 model
which has achieved the highest reported SARI
score on TurkCorpus dataset until now. These
works have shown that adding control tokens can
significantly improve the performance of TS mod-
els.

2.2 Factuality errors

Factuality errors happen when sample pairings do
not accurately represent the job. They can be di-
vided into two categories: bad simplification and
bad alignment (Xu et al., 2015). Bad simplifica-
tion is identified when the target sentence does not
simplify the source sentence, while, when the con-
tents of the source sentence and the target sentence
disagree, this corresponds to bad alignment. The
topic of factuality errors was addressed by Xu et al.
(2015) where, through manual examination of 200
sentence pairs from the Parallel Wikipedia Simpli-
fication corpus, they found that 33% of sentence
pairs were not simplified, and 17% of sentence

pairs were not aligned. Thus, they suggested that
Simple Wikipedia was a poor training resource and
advised using the Newsela dataset instead. How-
ever, Devaraj et al. (2022) recently performed a
manual quantitative analysis on both Newsela and
Wikilarge and demonstrated that, although Newsela
dataset made more proactive simplification oper-
ations, it faced a more serious problem with bad
simplification error.

3 Factuality error detection

In this study, we implemented a rule-based algo-
rithm to detect factuality errors in the Wikilarge
dataset. For the detected samples, the loss of the
TS model was subsequently scaled down during
training to reduce their impact on the model’s learn-
ing performance.

To detect bad simplification, we utilized the
Flesch–Kincaid grade level (FKGL) metric (Kin-
caid et al., 1975), which was designed for eval-
uating text readability and has also been used as
an evaluation metric in multiple previous works
(Martin et al., 2020; Sheang and Saggion, 2021;
Omelianchuk et al., 2021). FKGL was originally
calculated at the paragraph level based on the av-
erage length of the sentence ( Nwords

Nsentences
) and the

number of syllables (Nsyllables

Nwords
). To apply FKGL

to the sentence level, instead of calculating the av-
erage length, the length of the sentence itself was
used (Eq. 1). With the assumption that readability
reflected simplicity, any sentence pairs for which
the source sentence y had higher FKGL score than
its target counterpart x were marked as bad simpli-

174



fication pairs.

FKGL = 0.39Nwords + 11.8
Nsyllables

Nwords
− 15.59

(1)
Bad alignment was recognized based on named
entity recognition. Named entity refers to a phrase
that clearly identifies one item from a set of other
items that have similar attribute. We identified lo-
cations, name, time, and organization in both target
and source sentences. This was performed through
a pretrained classifier provided by the NLTK li-
brary1(Bird and Loper, 2009). Here, we assumed
that simplification might reduce but should not add
entities. According to this, we calculated the cosine
similarity between all the entities in source sen-
tences and target sentences. Because each named
entity may contain different number of words, we
used a contextual embedding model based on trans-
formers to create embeddings for each named entity
rather than a word level encoder such as word2vec
(Mikolov et al., 2013). Bad alignment was rec-
ognized if there existed an entity et in the target
sentence that did not have a corresponding entity es
in the source sentence with cosine similarity higher
than a predefined threshold T .

For the pairs marked with factuality error, their
corresponding weights were scaled down during
training as shown in Eq. 2 and 3 for the bad sim-
plification and bad alignment respectively. The
effect of the factuality error samples suppression
was explored by experimenting with different scal-
ing parameters α1 and α2.

w1 =

{
α1 if FKGL(x)<FKGL(y)

1
(2)

w2 =

{
1 if ∀et∃escos(et, es) > T

α2
(3)

The resulting weights of bad simplification and
bad alignment were multiplied together, and the
outcome was then normalized by the total weight.
Thus, sentence pairs that were found to be both un-
aligned and unsimplified were further suppressed.

loss =

∑
CrossEntropy(output, label)w1w2∑

w1 ∗ w2
.

(4)

1https://www.nltk.org

4 Experiment

4.1 Model

We used the TST5 model to evaluate the efficiency
of our approach (Sheang and Saggion, 2021). All
the training details were unchanged. The T5-
based pretrained model was used as the backbone.
Huggingface Transformers library2 and Pytorch-
lighting3 were used to train the model. NLTK li-
brary was used for named entity recognition. Hug-
gingface’s sentence encoder all-MiniLM-L6-v24

was used to create embeddings for named entities.
For comparing cosine similarities, the threshold T
was set to 0.6, which was selected after experiment-
ing with different threshold values.

In order to enable controllable simplicity,
four control tokens were implemented, including
NBChars, LevSim, WordRank, and DepTreeDepth,
which were identical to ACCESS (Martin et al.,
2020). During testing, the control tokens that pro-
duced the highest SARI score in the validation set
were used.

We investigated different values for the param-
eters α1 and α2 to explore the impact of the error
samples suppression in the model’s performance.
Specifically, we assessed the model’s performance
when bad simplification or bad alignment detection
was considered with 50% suppression (α1/α2 =
0.5), 80% suppression (α1/α2 = 0.2), 98% suppres-
sion (α1/α2 = 0.02), and 100% suppression (α1/α2

= 0).

4.2 Datasets

We used WikiLarge for training and TurkCorpus
and ASSET for validation and testing. The three
datasets are described below.

WikiLarge (Zhang and Lapata, 2017): Contains
29, 6402 sentence pairs from Simple Wikipedia and
normal Wikipedia. It is the largest and the most
commonly used TS dataset.

TurkCorpus (Xu et al., 2016): Contains 2, 000
sentence pairs for validation and 359 sentence pairs
for testing. Each sentence has 8 references manu-
ally simplified by different people.

ASSET (Alva-Manchego et al., 2020): Contains
2, 000 sentence pairs for validation and 359 sen-
tence pairs for testing with 10 references.

2https://huggingface.co/transformers/model_
doc/t5.html

3https://pytorchlightning.ai
4https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2

175

https://www.nltk.org
https://huggingface.co/transformers/model_doc/t5.html
https://huggingface.co/transformers/model_doc/t5.html
https://pytorchlightning.ai
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


TurkCorpus ASSET
SARI↑ FKGL↓BLEU↑ SARI↑ FKGL↓BLEU↑

TST5(Sheang and Saggion, 2021) 42.46 6.28 64.26 45.17 6.31 70.04
+ bad simplification detection (α1 = 0.2) 43.06 6.12 66.07 44.75 6.19 70.87
+ bad simplification detection (α1 = 0.02) 42.87 6.08 65.50 45.10 6.29 71.42
+ bad alignment detection (α2 = 0.2) 42.84 6.38 65.93 45.17 6.27 71.04
+ bad alignment detection (α2 = 0.02) 42.90 6.15 64.91 45.03 6.23 69.42
+ both (α1, α2 = 0.5) 42.89 6.17 64.48 44.96 6.33 70.23
+ both (α1, α2 = 0.2) 43.03 5.95 64.97 45.51 6.01 70.03
+ both (α1, α2 = 0.02) 43.25 5.95 68.32 45.12 6.02 74.03
+ both (α1, α2 = 0) 43.25 6.19 67.74 45.23 6.28 72.55

Table 2: Performance of the TST5 model trained on the original and modified versions of the Wikilarge and tested
on TurkCorpus and ASSET datasets.

To the best of our knowledge, all three datasets
were created ethically and are publicly available.
No new text data were collected or created as part
of this study.

4.3 Evaluation metrics
We evaluated the TST5 model’s performance using
the SARI, FKGL, and BLEU metrics described
below.

SARI (Xu et al., 2016): Averages F1 scores
for addition, keep, and deletion operations with
references.

FKGL (Kincaid et al., 1975): Evaluates the read-
ability of a sentence.

BLEU (Papineni et al., 2002): Assesses how
well one sentence matches multiple references.

As SARI is the most adopted metric for TS we
used it as our primary metric while FKGL was used
to evaluate the simplicity of our output. Although
research has shown that BLEU is not suitable for
the TS task (Sulem et al., 2018), we included it in
our analysis for comparison with previous works.
The Wilcoxon signed-rank test (Wilcoxon, 1992)
was used to assess the statistical significance of our
results.

4.4 Results
Our proposed factuality error detection algorithm
identified 68, 237 (23 %) samples with bad sim-
plification and 93, 030 (31 %) samples with bad
alignment. In total, 45% of the total samples of
Wikilarge were identified as factuality errors. The
proposed dataset modification with the suppression
of both bad simplification and bad alignment sam-
ples by factors of α1, α2 = 0.02 resulted in the best
statistically significant improvement of the SARI

and FKGL scores by 0.79 and 0.33 respectively on
TurkCorpus and improvement of FKGL by 0.29
on ASSET (p<0.05). The SARI score on ASSET
showed an inconsistent variation, in most of the
cases without statistically significant change.

It should be noted that TST5 reported a higher
SARI score in the original study(Sheang and Sag-
gion, 2021), but we were unable to reproduce the
same results using the code provided by the au-
thors.

5 Discussion

Our factuality detection rate was aligned with the
work of Xu et al. (2015)’s experiment on the bad
simplification case (23% and 33% respectively),
however, it identified a higher number of bad align-
ment samples (31% in comparison to 17%). This
could be due to sensitivity differences between the
two approaches.

Our TS results (Table 2) demonstrated that the
TST5 model’s performance could be enhanced by
both bad simplification and bad alignment detec-
tion. The combination of both factuality errors
detection led to improved results. We observed a
significant improvement of SARI on TurkCorpus,
but not in ASSET, where the SARI score showed
an inconsistent but not statistically significant varia-
tion. The reason might be due to the SARI score on
ASSET being so close to the reference that it was
difficult to improve. These results indicate that that
the TST5 model trained on the modified Wikilarge
was able to generate simpler sentences compared
to the original TST5.

From Table 2, it can also be seen that the model’s
performance improved as the factuality error sam-
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ple weights decreased. This indicates that the im-
pact of the erroneous samples in the training perfor-
mance might be more significant than the reduction
of the dataset size.

Our results illustrate that the existence of fac-
tuality errors in the training datasets used for TS,
can induce a significant impact in the performance
of the TS models. This indicates a general need
for new reliable datasets exploration. Better error
detection methods, including more thorough tun-
ing, and further validation is needed with other TS
models and other parallel datasets such as Newsela,
which is part of our future work. The trade-off
between error detection sensitivity and dataset size
reduction is crucial and needs further investigation.

6 Conclusion

In this paper, we designed a model-independent
factuality error detection mechanism to support TS
model training. We demonstrated that our mecha-
nism could significantly improve the performance
of the SOTA TS model (TST5) based on recog-
nized TS metrics. Our study raises the need for
high quality parallel datasets, as well as automated
factuality error detecton methods to improve the
performance of TS models.

7 Limitations

We focused on the Wikilarge dataset and did not
include investigation on the Newsela dataset due to
lack of access to it at the time of the study. Addi-
tionally, we tested our approach on the SOTA TS
model TST5 only. However, more models should
be tested to assess the generalization of the pro-
posed method. Due to time and resource limita-
tions, we only analyzed our model based on es-
tablished TS metrics and did not conduct a human
evaluation.
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