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Abstract

In this paper, we describe the system we present
at the Workshop on Text Simplification, Acces-
sibility, and Readability (TSAR-2022) regard-
ing the shared task on Lexical Simplification
for English, Portuguese, and Spanish. We pro-
posed an unsupervised approach in two steps:
First, we used a masked language model with
word masking for each language to extract pos-
sible candidates for the replacement of a dif-
ficult word; second, we ranked the candidates
according to three different Transformer-based
metrics. Finally, we determined our list of can-
didates based on the lowest average rank across
different metrics. The results show that our
method, based on two simple steps and rank-
ings, can effectively improve the scores among
datasets for the task of lexical simplification.

1 Introduction

The notion of linguistic complexity has been widely
debated in both theoretical and computational lin-
guistics, and has been interpreted very differently
depending on the discipline. Specifically, in the
field of natural language processing (NLP), com-
plexity has often been associated with the difficul-
ties that language users encounter while processing
concrete linguistic productions (e.g., sentences, ut-
terances, etc.) (Blache, 2011; Chersoni et al., 2016,
2017, 2021; Sarti et al., 2021; Iavarone et al., 2021),
with research focusing on applications that aim to
simplify challenging texts and to make them more
easily readable for a wider variety of users (North
et al., 2022b).

Previously, NLP shared tasks focused on the
problem of identifying a complex word in a sen-
tence, or assigning a difficulty score to it (Yimam
et al., 2018; Shardlow et al., 2021). The TSAR-
2022 shared task (Saggion et al., 2022) instead fo-
cused on the next step; that is, how to find simpler
words as replacement candidates for a given target
word in a multilingual setting. Consequently, the

task can be seen as similar to lexical substitution in
context (McCarthy and Navigli, 2009).

In this paper, we describe our contribution to
the TSAR-2022 shared task, which is a system
for English, Portuguese, and Spanish that i) gener-
ates replacement candidates for a given word via
masked language modeling, and ii) assigns scores
to the candidates by averaging the ranks assigned
by different Transformer-based metrics.

2 Related Work

The goal of the previous shared tasks regarding
lexical complexity was to identify complex words
in a sentence context, and complexity was defined
as a binary variable (Paetzold and Specia, 2016b;
Yimam et al., 2018). However, these tasks were
oversimplified because there is no clear-cut choice
in many contexts, and human annotators prefer
to assign a score based on a continuous scale of
difficulty. Shardlow et al. (2020) introduced the
CompLex corpus, a gold-standard benchmark for
lexical complexity in English, in which words and
multiword expressions are extracted from different
text genres (legal, religious, and biomedical gen-
res) and are annotated with continuous scores that
reflect their difficulty in the sentence context. The
same corpus was then used as the source material
for the SemEval-2021 shared task regarding lexical
complexity in context (Shardlow et al., 2021).

The estimation of lexical complexity is only one
component in the lexical simplification pipeline,
which also involves generating candidates for sub-
stitution, ranking them, and assessing their degree
of fitness in the given sentence context. Datasets fo-
cusing on the latter parts of the pipeline have been
published for English (Specia et al., 2012; Horn
et al., 2014; Paetzold and Specia, 2016a; Štajner
et al., 2022), Japanese (Kajiwara and Yamamoto,
2015; Hading et al., 2016), Portuguese (Hartmann
and Aluísio, 2020; North et al., 2022a; Štajner et al.,
2022), French (Rolin et al., 2021), Spanish (Alar-
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Language Sentence Target Substitutes

English (EN)
Brevard County was the scene

of six homicides in 2011, Goodyear said.
homicides

murders
deaths
killings

Portuguese (PT)
o nosso é brasileiro colorido é um menino alegre com

pontos de melancolia
melancolia

tristeza
tédio

abatimento

Spanish (ES)
Antes de aquello, el estadio albergaba una

capacidad para más de 130.000 espectadores.
albergaba

alojaba
tiene
aloja

Table 1: Dataset examples for each of the three languages.

con, 2021; Ferrés and Saggion, 2022; Štajner et al.,
2022), and Chinese (Qiang et al., 2021).

The current state-of-the-art system for English,
LSBert, was introduced by Qiang et al. (2020). The
system first generates a list of possible replacement
candidates via the masked language modeling func-
tion of BERT (Devlin et al., 2019) by being fed
the original sentence concatenated with a copy of
the sentence in which the original word has been
masked. The system then performs a re-ranking
using different features, e.g. frequency, vector-
based semantic similarity, and/or language model
probability. Studies using LSBert (Przybyła and
Shardlow, 2020; Štajner et al., 2022) have shown
that the approach could easily be adapted to other
languages and still achieve state-of-the-art results.

3 Experimental Settings

3.1 Datasets
The shared task organizers provided a testing
dataset (Štajner et al., 2022) with a combined num-
ber of 1115 instances: 373 for English, 374 for
Portuguese, and 368 for Spanish. Each instance
consisted of a sentence, a target word, and a list
with a variable number of gold replacement words,
all obtained from human native speakers on Ama-
zon Mechanical Turk. Each instance was annotated
by 25 different annotators, and each annotator had
to simplify the sentence by proposing a simpler
candidate word for substitution. An example for
each target language is displayed in Table 1.

3.2 Methodology
3.2.1 Candidate Generation
For each of the three target languages, we masked
each target word in the dataset instances and used
a masked language model – a variant of the BERT
Base model (Devlin et al., 2019) – to generate a list

of candidate words (the original word itself was fil-
tered out). For English, we simply used the original
BERT Base;1 for Portuguese, we used the BERT
Base BERTimbau model by Souza et al. (2020);2

for Spanish, we used the BETO model by Canete
et al. (2020).3 For our experiments, the number
n of generated candidates was used as a system
parameter, and was fixed at n = 30. Importantly,
for each candidate word we saved the rank; that
is, the position that the word occupies in the list of
candidates sorted by decreasing probability score.
We refer to this method, before any re-ranking step,
as the Base and used it as a baseline method.

3.2.2 Candidate Re-Ranking
Using the n candidate words identified in the
candidate generation step, we extracted three
Transformer-based metrics for re-ranking. The
idea behind our approach is that words that achieve
higher scores and lower rankings for multiple met-
rics are strong candidates for replacement.

We considered three metrics, which we extracted
via the minicons library (Misra, 2022):

• Sentence probability via autoregressive lan-
guage modeling. For each item, we replaced
the target word with a candidate substitute
word, and computed a probability for the
whole sentence via a variant of the GPT2
model (Radford et al., 2019). For English, we
used the original GPT2-Base;4 for Portuguese,
the GPorTuguese-2 Small (Guillou, 2020);5

1https://huggingface.co/
bert-base-uncased

2https://huggingface.co/neuralmind/
bert-base-portuguese-cased

3https://huggingface.co/dccuchile/
bert-base-spanish-wwm-uncased

4https://huggingface.co/gpt2
5https://huggingface.co/pierreguillou/

gpt2-small-portuguese
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Method Acc@1 Acc(1,2,3)@Top1 Pot(3,5,10) MAP(3,5,10)
Base 0.27 0.12 / 0.19 / 0.22 0.49 / 0.57 / 0.68 0.17 / 0.13 / 0.08
Base + LMProb * 0.32 0.14 / 0.20 / 0.26 0.51 / 0.60 / 0.71 0.19 / 0.15 / 0.09
Base + PLL 0.29 0.12 / 0.17 / 0.22 0.5 / 0.6 / 0.72 0.18 / 0.14 / 0.08
Base + cosSim * 0.43 0.2 / 0.28 / 0.33 0.61 /0.7 / 0.77 0.27 / 0.2 / 0.11
Base + All * 0.4 0.18 / 0.26 / 0.3 0.59 / 0.68 / 0.75 0.25 / 0.18 / 0.11
TUNER 0.34 0.14 / 0.17 / 0.18 0.43 / 0.44 / 0.44 0.17 / 0.1 / 0.05
LSBert 0.6 0.3 / 0.44 / 0.53 0.82 / 0.87 / 0.94 0.40 / 0.29 / 0.17

Table 2: Scores for the English dataset. * indicates the systems submitted to the shared task.

and for Spanish, a GPT2 Base model trained
on the BETO corpus (Canete et al., 2020).6

• Sentence probability via masked language
modeling. Similar to the previous metric, we
computed the probability of the sentence via
estimating the pseudo-log-likelihood (PLL)
with a masked language model (the scores
were obtained by masking the tokens one-by-
one) (Salazar et al., 2020). For this metric,
we adopted the same versions of BERT Base
used in the step of candidate generation.

• Contextualized embedding similarity. By al-
ways using the same BERT Base models, we
measured the cosine similarity of i) the con-
textualized embedding of the target word in
the context of the original sentence, and ii)
the contextualized embedding of each candi-
date word after replacing the target word in
the original sentence.

score(w) =
rankBase(w) + rankmetric(w)

2
(1)

After computing the scores for each of the three
metrics in our pool of n candidates, we sorted them
to obtain their respective rankings. We call these
rankings, respectively, LMProb, PLL and cosSim.
Then, for each candidate word w, we computed
its score by averaging the rank in the Base model
and the rank in one of the metrics (see Equation 1).
This resulted in three different scores: 1) Base +
LMProb; 2) Base + PLL; and 3) Base + cosSim.
We then computed one last score, which averaged
the ranks of the four rankings together for each
candidate word. We call this score Base + All. The
scores of the candidate words are finally sorted in
ascending order (the ones with the lowest ranks are
the top candidates for replacement).

6https://huggingface.co/mrm8488/
spanish-gpt2

3.3 Baselines and State-of-the-Art

We presented the scores for a simple baseline
method, based on the mere candidate generation
by a BERT masked language model, without any
further re-ranking (Base). Moreover, the scores for
two state-of-the-art systems were provided by the
shared task organizers for comparison:

• TUNER, an unsupervised system introduced
by Ferrés et al. (2017) for Spanish, and fur-
ther adapted to English and Portuguese. The
system relies on the identification of a list of
candidate synonyms via a word sense disam-
biguation algorithm and a distributional the-
saurus.7 Candidates are then re-ranked based
on their frequencies in the Wikipedia of each
language. Finally, a morphological generator
component ensures that the correct form of
the word is selected for the final replacement;

• The above-mentioned LSBert system (Qiang
et al., 2020), with its adaptations to Spanish
and Portuguese.

3.4 Evaluation

Evaluation metrics for lexical simplification were
introduced by Paetzold and Specia (2016a):

• Accuracy (Acc): Acc@1 is the ratio of in-
stances for which the top substitute is in the
gold standard, regardless of the order, and it
is the main metric for ranking the shared task
systems; AccK measures instead the ratio of
instances for which at least one of the top
K predicted candidates matches the most fre-
quently suggested candidate synonym in the
gold standard (we made our system return up
to 10 candidates per instance);

7Both tools rely on the Freeling text analysis tool (Padró
and Stanilovsky, 2012), available at: https://nlp.lsi.
upc.edu/freeling/index.php/node/1.
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Method Acc@1 Acc(1,2,3)@Top1 Pot(3,5,10) MAP(3,5,10)
Base 0.23 0.1 / 0.12 / 0.15 0.34 / 0.39 / 0.49 0.12 / 0.08 / 0.05

Base + LMProb * 0.22 0.09 / 0.12 / 0.15 0.33 / 0.38 / 0.49 0.11 / 0.08 / 0.05
Base + PLL 0.22 0.09 / 0.13 / 0.14 0.34 / 0.4 / 0.48 0.12 / 0.08 / 0.05

Base + cosSim * 0.32 0.14 / 0.19 / 0.21 0.45 / 0.51 / 0.57 0.17 / 0.12 / 0.07
Base + All * 0.28 0.11 / 0.14 / 0.17 0.4 / 0.47 / 0.55 0.15 / 0.1 / 0.06

TUNER 0.22 0.13 / 0.16 / 0.16 0.27 / 0.27 / 0.27 0.1 / 0.06 / 0.03
LSBert 0.32 0.16 / 0.23 / 0.28 0.49 / 0.58 / 0.67 0.19 / 0.13 / 0.07

Table 3: Scores for the Portuguese dataset. * indicates the systems submitted to the shared task.

Method Acc@1 Acc(1,2,3)@Top1 Pot(3,5,10) MAP(3,5,10)
Base 0.24 0.1 / 0.14 / 0.18 0.45 / 0.53 / 0.62 0.15 / 0.11 / 0.06

Base + LMProb * 0.2 0.08 / 0.13 / 0.17 0.41 / 0.5 / 0.64 0.14 / 0.1 / 0.06
Base + PLL 0.23 0.08 / 0.15 / 0.2 0.44 / 0.54 / 0.64 0.16 / 0.11 / 0.06

Base + cosSim * 0.36 0.16 / 0.2 / 0.23 0.52 / 0.6 / 0.68 0.2 / 0.14 / 0.08
Base + All * 0.28 0.11 / 0.18 / 0.22 0.5 / 0.6 / 0.68 0.18 / 0.13 / 0.07

TUNER 0.12 0.06 / 0.08 / 0.08 0.14 / 0.14 / 0.15 0.06 / 0.03 / 0.02
LSBert 0.28 0.09 / 0.14 / 0.18 0.49 / 0.61 / 0.74 0.19 / 0.13 / 0.07

Table 4: Scores for the Spanish dataset. * indicates the systems submitted to the shared task.

• Potential (Pot): the ratio of instances for
which at least one of the generated candidates
is present in the gold standard.

• Mean Average Precision (MAP): a commonly-
used metric in information retrieval, which
assesses how many of the predicted candi-
dates are relevant (i.e., how many of them
are present in the gold standard annotations).

In the official results, the metrics are computed
based on different values of K: for Accuracy, K =
1, 2, 3, while for Potential and MAP, K = 3, 5, 10.

4 Results and Conclusion

The results for English, Portuguese and Spanish
can be seen, respectively, in Table 2, 3 and 4. On
the basis of preliminary results on the trial dataset,
we submitted the scores for Base + All, Base +
LMProb, and Base + cosSim in all the three lan-
guage tracks. At a glance, it can be seen that the
combination of the Base ranking with the ranking
based on cosine similarity is the only one that con-
sistently improves over the baseline performance.
A possible reason is that the initial selection of
the candidates is already based on a Transformer
language model, so it could be the case that the in-
formation coming from the language model-based
rankings is redundant, or tend to suggest the same
subset of candidates. On the other hand, the cosine
metric between the contextualized embeddings is
assessing a paradigmatic type of similarity between
the target and the candidate word: this is not nec-
essarily taken into account by the other metrics,
which are more focused on the syntagmatic axis.

Our method relying on Base + cosSim, which
was submitted as PolyU-CBS3, was the one report-
ing the best scores on all the three datasets (15th
overall on English, 5th on Spanish, 3rd on Por-
tuguese). It is noticeable that our methods always
outperform TUNER on the metrics of Potential and
MAP. The LSBert is the best performing method
on English and Portuguese datasets, although our
Base + cosSim is a close match to the latter. Fi-
nally, Base + cosSim outperforms both TUNER
and LSBert on Spanish. We take the results as a
preliminary evidence that our method, based on
two simple steps and ranking, can be highly effec-
tive for the task of lexical simplification. A possible
way to further improve the methodology will be to
introduce different methods of extracting candidate
words. In our preliminary experiments, we found
that a similarity ranking based on traditional, static
embedding model alone can lead to improvements
of the performance on English. However, for lan-
guages with a richer morphology like the Romance
ones, a morphological adapter would be needed
to generate the form that best fits the target sen-
tence. Another possible direction could be using a
generative model treating the task as a text-to-text
problem (Raffel et al., 2020), which could be fine-
tuned on supervised lexical substitution data and
combined with a frequency filter to ensure that the
proposed replacement is actually a simpler word.
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