
Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), pages 243 - 250
December 8, 2022 ©2022 Association for Computational Linguistics

MANTIS at TSAR-2022 Shared Task: Improved Unsupervised Lexical
Simplification with Pretrained Encoders

Xiaofei Li1, Daniel Wiechmann2, Yu Qiao1, Elma Kerz1
1 RWTH Aachen University
2 University of Amsterdam

{xiaofei.li1,yu.qiao}@rwth-aachen.de
d.wiechmann@uva.nl, elma.kerz@ifaar.rwth-aachen.de

Abstract

In this paper we present our contribution to
the TSAR-2022 Shared Task on Lexical Sim-
plification of the EMNLP 2022 Workshop on
Text Simplification, Accessibility, and Read-
ability. Our approach builds on and extends
the unsupervised lexical simplification system
with pretrained encoders (LSBert) system in-
troduced in Qiang et al. (2020) in the following
ways: For the subtask of simplification can-
didate selection, it utilizes a RoBERTa trans-
former language model and expands the size
of the generated candidate list. For subsequent
substitution ranking, it introduces a new fea-
ture weighting scheme and adopts a candidate
filtering method based on textual entailment
to maximize semantic similarity between the
target word and its simplification. Our best-
performing system improves LSBert by 5.9%
accuracy and achieves second place out of 33
ranked solutions.

1 Introduction

Lexical simplification (LS) is a natural language
processing (NLP) task that involves automatically
reducing the lexical complexity of a given text,
while retaining its original meaning (Shardlow,
2014; Paetzold and Specia, 2017b). Since LS has
a high potential for social benefit and improving
social inclusion for many people, it has attracted
increasing attention in the NLP community (Šta-
jner, 2021). LS systems are commonly framed as a
pipeline of three main steps (Paetzold and Specia,
2017a): (1) Complex Word Identification (CWI),
(2) Substitute Generation (SG), and (3) Substitute
Ranking (SR), with CWI often being treated as an
independent task.

In this paper, we present our contributions to the
English track of the TSAR-2022 Shared Task on LS
(Saggion et al., 2022). Focusing on steps (2) and (3)
in the pipeline above, the task was defined as fol-
lows: Given a sentence containing a complex word,
systems should return an ordered list of “simpler”

valid substitutes for the complex word in its origi-
nal context. The list of simpler words (up to a max-
imum of 10) returned by the system should be or-
dered by the confidence the system has in its predic-
tion (best predictions first). The ordered list must
not contain ties. The task employed a new bench-
mark dataset for lexical simplification in English,
Spanish, and (Brazilian) Portuguese. The gold an-
notations consists of all simpler substitutes sug-
gested by crowdsourced workers and checked for
quality by at least one computational linguist who
is native speaker of the respective language (for de-
tails, see Štajner et al. (2022)). Contributing teams
were provided with a small sample with gold stan-
dard annotations as a trial dataset. For English, this
trial dataset consists of 10 instances of a sentence,
a target complex word and a list of substitution can-
didates. The English test dataset consisted of 373
instances of sentence/complex word pairs. Submis-
sion were evaluated in terms of ten performance
metrics that fall into three groups: (1) MAP@K
(Mean Average Precision@K) for K = 1, 3, 5, 10
candidate words. This metric evaluates a ranked
list of predicted substitutes that is matched (rele-
vant) and not matched (irrelevant) terms against
the set of the gold-standard annotations for eval-
uation. (2) Potential@K: K = 1, 3, 5, 10. Po-
tential scores quantify the percentage of instances
for which at least one of the substitutions pre-
dicted is present in the set of gold annotations and
(3) Accuracy@K@top1: K = 1, 2, 3. Accuracy
scores represent the ratio of instances where at least
one of the K top predicted candidates matches the
most frequently suggested synonym/s in the gold
list of annotated candidates.

2 System Description

Our contributions to the TSAR shared task builds
on and extends the approach to unsupervised lex-
ical simplification with pretrained encoders – LS-
Bert – described in Qiang et al. (2020) and Qiang

243

et al. (2021). This approach leverages a pretrained
transformer language models to generate context-
aware simplifications for complex words. The
LSBert simplification algorithm addresses two of
three principal subtasks of LS: simplification can-
didate generation and substitution ranking.

Our approach extends LSBert in the following
ways: (1) It utilizes a RoBERTa transformer lan-
guage model for simplification candidate genera-
tion and expands the size of the generated candi-
date list. (2) It introduces new substitution ranking
methods that involve (i) a re-weighting of the rank-
ing features used by LSBert and (ii) the adoption
of equivalence scores based on textual entailment
to maximize semantic similarity between the tar-
get word and its simplification. In submissions
(runs) 2 and 3, we further explore the utility of
crowdsourcing- and corpus-based measure of word
prevalence for substitution ranking. The simplifi-
cation algorithm underlying the three submissions
described in this paper is shown in Algorithm 1. In
the following we describe the details of simplifica-
tion candidate generation (2.1), substitution rank-
ing (2.2) and obtaining equivalence scores (2.3).

Algorithm 1 Lexical Simplification
Input: sentence S, Complex word w
Output: sorted suggestion list word_list
1: Replace word w of S into <mask> as S′

2: Concatenate S and S′ using <s> and </s>
3: p(·|S, S′ \ {w})← RoBERTa(S, S′)
4: scs← top_probability(p(·|S, S′ \ {w}))
5: all_ranks← ∅
6: for each feature f and its weight cf do
7: scores← ∅
8: for each sc ∈ scs do
9: scores← scores ∪ f(sc)

10: end for
11: rank ← cf × rank_numbers(scores)
12: all_ranks← all_ranks ∪ rank
13: end for
14: tot_rank ← sum(all_ranks)
15: word_list′ ← sort_ascending(tot_rank)
16: word_list← postproc(word_list′)
17: return word_list

2.1 Simplification Candidate Generation
During candidate generation, for each pair of sen-
tence S and complex word w, the LSBert algo-
rithm first generates new sequence S′ in which w
is masked. The two sentences S and S′ are then

concatenated and fed into a pretrained transformer
language model (PTLM) to obtain the probabil-
ity distribution of the vocabulary that can fill the
masked position, p(·|S, S\{w}). The top 10 words
from this distribution are considered as the list of
simplification candidates.1 Our simplification can-
didate generation method differs from the one used
in LSBert in two ways: (1) the choice of PTLM
and (2) the size of the candidate list. Qiang et al.
(2021) performed experiments with three BERT
models: (i) BERT-based, uncased: 12-layer, 768-
hidden, 12-heads, 110 M parameters. (ii) BERT-
large, uncased: 24-layer, 1024-hidden, 16-heads,
340 M parameters, and (iii) BERT-large, uncased,
Whole Word Masking (WWM): 24-layer, 1024-
hidden, 16-heads, 340 M parameters. The results of
their experiments indicated that the WWM model
obtains the highest accuracy and precision. Here
we extended these PTLM-experiments to include
RoBERTa models (Liu et al., 2019) and also ex-
perimented with the combined use of BERT and
RoBERTa to enlarge the list of substitution candi-
dates. The results of our experiments indicated that
optimal results are obtained using the RoBERTa-
md: 12-layer, 768-hidden, 12-heads, 125M param-
eters. To maximize the chance of obtaining at least
ten suitable substitution candidates after rigorous
filtering based on semantic criteria (see below), we
increased the size of the candidate list generated in
this step from 10 to 30 candidates.

2.2 Substitution Ranking

In LSBert, candidate substitutions are ranked based
on four features each of which is designed to cap-
ture one aspect of the suitability of the candidate
word to replace the complex word. These features
are rank orders of candidate substitutions based
on four scores: (1) ‘Pretrained LM (PTLM) pre-
diction’ (BPTLM (sc), in LSBert, PTLM = Bert)
representing the probability derived from PTLM
that the candidate substitution word sc presents
at the masked position given the rest of a sen-
tence. (2) ‘Language model feature’ (LPLM (sc))
representing the average loss of the context of sc,
wm
−m = (w−m, w−m+1, . . . , w0, . . . , wm−1, wm),

where w0 = sc. (3) ‘Semantic similarity’ (S(sc))
expressed as the cosine similarity between the fast-
Text vector of the original word and the that of
the sc. (4) ‘Word frequency’ (F (sc)) as estimated
from the top 12 million texts from Wikipedia and

1Morphological derivations of w are excluded.

244

the Children’s Book Test corpus.2 In LSBert, the
rank of a sc,R(sc), is based on an equal weighting
of these four features, as shown in equation (1) and
(2).

Score(sc) =
1

4

∑

f∈{BBert,−LBert,S,F}
rankf (sc)

(1)

R(sc) = rankScore(sc) (2)

where rankf : SCS → Z:

sc 7→ |{w ∈ SCS|f(w) > f(sc)}|+ 1

and SCS is the set of all substitution candidates.
In our three submissions to the shared task, we

considered three different strategies to derive the
above Score(sc): In the first submission (Man-
tis_1), we adapted the ranking method as shown in
equation (3). cf is the feature weight for feature f
and cBRoberta

= cF = 1, cS = 3.

Scorerun1(sc) =
∑

f∈{BRoberta,S,F}
cf · rankf (sc)

(3)

This ranking method introduces a re-weighting
of the features so as to (i) increase the relative im-
portance of the semantic similarity between the
target word w and a substitute candidate sc and (ii)
decrease the relative importance of the probability-
based PTLM prediction. With regard to the former,
the value of S(sc), corresponding to ranked cosine
similarity, was increased by a factor of 3 to penalize
candidates with low similarity to the target word.
With regard to the latter, we decided to drop the lan-
guage model feature LPTLM (sc) as its correlation
with BPTLM (sc) would yield an up-weighting of
the importance assigned to the probability of sc to
appear in the masked position.

In the second and third submissions (Mantis_2
and Mantis_3), we experimented with alternative
features for substitution ranking: To this end, we
first computed lexical complexity scores for the
sentences in the trial data for each substitution can-
didate using 77 indicators (see Table 2 in the ap-
pendix). All scores were obtained using an auto-
mated text analysis system developed by our group
(for its recent applications, see e.g. Wiechmann
et al. (2022) or Kerz et al. (2022)). Tokenization,
sentence splitting, part-of-speech tagging, lemmati-
zation and syntactic PCFG parsing were performed
using Stanford CoreNLP (Manning et al., 2014).

2https://github.com/google-research/
bert

We then used each feature to obtain a rank order of
substitution candidates and correlated reach rank-
ing with the rank order of substitution candidates
provided in the trial data. The top-2 lexical features
yielding the largest correlations with the gold stan-
dard ranking were selected for substitution ranking
for Mantis_2 and Mantis_3, respectively. Both
of these lexical features concern word prevalence
(WP), i.e. they refer to the number of people who
know the word: WPcrowd estimates the proportion
of the population that knows a given word based
on a crowdsourcing study involving over 220,000
people (Brysbaert et al., 2019). WPcorp.SDBP is an
corpus-derived estimate of the number of books
that a word appears in (Johns et al., 2020). The
corresponding rankings were obtained as shown in
equations (4) and (5):

Scorerun2(sc) =
∑

f∈{WPcrowd,Eq}
rankf (sc) (4)

Scorerun2(sc) =
∑

f∈{WPcorp.SDBP ,Eq}
rankf (sc)

(5)
Apart from these WP-features, the substitution

ranking in runs 2 and 3 was determined by a seman-
tic feature, referred to as the ‘equivalence score’
Eq(sc) (see section 2.3). This score was evoked
based on the consideration that semantic similar-
ity measured by cosine similarity of embeddings
is not expressive enough (Kim et al., 2016): Any
two words that are frequently used in similar con-
texts will have a low cosine similarity between
the embeddings. Thus cosine similarity often fails
to recognize antonyms, such as "fast" and "slow".
The next section will provide more details on how
equivalence score were obtained.

2.3 Obtaining Equivalence Scores
Lexical simplification needs to preserve the original
meaning of the target word. As cosine similarity
between embedding vectors can be too permissive,
we introduced a stricter criterion based on textual
entailment. To achieve this we utilized a language
model explicitly trained to the natural language
inference (NLI) task of evaluating logical connec-
tions between sentences. The central idea is to com-
pute for each substitute word sc a score that quanti-
fies the textual entailment of the original sentence
S and its variant S‘ that contains sc. Textual entail-
ment is a directional relation between text fragment
that holds whenever the truth of one text fragment
follows from another text. The entailing and en-

245

https://github.com/google-research/bert
https://github.com/google-research/bert

0.8096
0.7721

0.6568
0.6353

0.5978
0.5442
0.5415

0.5174
0.5067
0.4959

0.4664
0.4611
0.4504
0.4477
0.4316
0.4209
0.4021
0.3914
0.386

0.3806
0.378

0.3753
0.3619
0.3404
0.319

0.2815
0.2761
0.2654

0.26
0.1957
0.1849

0.1447
0.0455twinfalls_3

NU HLT_1
twinfalls_2
twinfalls_1

PresiUniv_2
UoM&MMU_2

Cental_1
GMU−WLV_2

PolyU−CBS_2
TUNER−baseline_1

Cental_2
CILS_1

PresiUniv_3
CILS_2
CILS_3

PolyU−CBS_1
PresiUniv_1
MANTIS_2

PolyU−CBS_3
teamPN_1
teamPN_3
MANTIS_3
teamPN_2

UoM&MMU_3
CL Lab PICT_1

GMU−WLV_1
RCML_1
RCML_2

LSBert−baseline_1
UoM&MMU_1

MANTIS_1
UniHD_1
UniHD_2

0.0 0.2 0.4 0.6 0.8
Accuracy.1

Te
am

 (
R

un
)

0.2812

0.2092
0.2193

0.1951

0.1755

0.1887
0.1799

0.16

0.1369
0.1461

0.0975

0.1673

0.0936
0.0937

0.1178

0.1507

0.1136
0.1113

0.1267
0.1262

0.0897

0.1235

0.1271

0.0546

0.0901

0.12

0.0707
0.0794

0.0439

0.0535
0.0514

0.0301
0.0182twinfalls_3

NU HLT_1
PresiUniv_2

twinfalls_2
twinfalls_1

TUNER−baseline_1
Cental_1

UoM&MMU_2
PresiUniv_3

PolyU−CBS_2
teamPN_3
teamPN_1
teamPN_2

PolyU−CBS_1
PresiUniv_1

PolyU−CBS_3
GMU−WLV_2

CILS_1
CILS_2
CILS_3

Cental_2
CL Lab PICT_1

UoM&MMU_3
MANTIS_2

GMU−WLV_1
MANTIS_3

LSBert−baseline_1
RCML_1
RCML_2

UoM&MMU_1
UniHD_1

MANTIS_1
UniHD_2

0.0 0.1 0.2
MAP.10

Te
am

 (
R

un
)

0.9946

0.9436

0.9785

0.949
0.9463

0.9436

0.9115

0.8981

0.8042

0.9088

0.7506

0.9436

0.7399
0.7453

0.7747

0.9517

0.7962

0.7533

0.638
0.6434

0.6327
0.63

0.8418

0.445

0.7104

0.8981

0.4182

0.6756

0.3163

0.5067
0.4664

0.2895

0.3619

NU HLT_1
PresiUniv_2

twinfalls_3
Cental_1

TUNER−baseline_1
twinfalls_2
twinfalls_1

CILS_1
PresiUniv_3

CILS_3
CILS_2

UoM&MMU_2
PolyU−CBS_2

teamPN_3
teamPN_1
teamPN_2

PolyU−CBS_1
PolyU−CBS_3

PresiUniv_1
CL Lab PICT_1

Cental_2
GMU−WLV_1
GMU−WLV_2
UoM&MMU_3

RCML_1
MANTIS_3

RCML_2
UniHD_1

LSBert−baseline_1
UoM&MMU_1

MANTIS_2
MANTIS_1

UniHD_2

0.00 0.25 0.50 0.75 1.00
Potential.10

Te
am

 (
R

un
)

Figure 1: Performance ranking based on Accuracy, Mean Average Precision, and Potential scores (k=10). Vertical
lines represent the median performance across the 33 submission for each metric.

tailed texts are termed premise (p) and hypothesis
(h), respectively. The relation between p and h can
be one of entailment, contradictory or neutral (nei-
ther entailment nor contradictory). To the extent
that p and h mutually entail each other, they are
considered equivalent. In this paper, the entailment
scores were obtained from the ‘roberta-large-mnli’
model from the Hugginface transformer library.3

Roberta-large-mnli is a RoBERTa large model fine-
tuned on the Multi-Genre Natural Language Infer-
ence corpus using a masked language modeling
objective (Williams et al., 2018). The entailment
score is defined as the probability that p entails h:

En(p, h) = Probθ(entailment | p, h) (6)

where θ is the parameters of trained roberta-
large-mnli. We quantify the degree of equivalence
of two sentences (equivalence score) as the product
of the entailment scores in both directions. For a
given sentence S and the corresponding simplified
sentence S′, the equivalence score is defined as:

Eq(S, S′) = En(S, S′) · En(S′, S) (7)

Apart from their use in the substitution ranking
in Mantis_2 and Mantis_3, equivalent scores were
also used in a postprocessing step in Mantis_1:
Here the list of substitution candidates was pruned
after ranking by removing candidates whose equiv-
alence scores were smaller than the mean equiva-
lence score of all candidates.

3https://huggingface.co/
roberta-large-mnli

3 End-to-end System Performance

The official results across seven performance met-
rics4 are presented in Table 1 in the appendix (for
details, see Saggion et al. (2022)). As the perfor-
mance metrics are strongly intercorrelated (mean
correlation across all metrics = 0.920, sd = 0.071,
see also Figure 2 in the appendix), we focus our dis-
cussion here on the results of one metric from each
of the three groups: (1) Accuracy.1, (2) MAP.10
and (3) Potential.10 (see Figure 1). Our best-
performing system was ‘Mantis_1’. This system
reached 2nd rank on both MAP.10 and Potential.10
and 3rd rank on accuracy. Mantis_1 displayed
an improvement over the median performance of
+25.56% on accuracy, +24.13% on potential.10
and +9.93% MAP.10. It outperformed the LSBert
baseline by +5.9% accuracy, +4.38 MAP.10 and
3.49% Potential.10. The two systems whose sub-
stitution ranking was based solely on word preva-
lence and an equivalence score lagged behind the
LSBert baseline on two of the performance metrics
shown here, suggesting that the improvements of
our system over LSBert was mainly due to better
substitution ranking, rather than candidate selec-
tion. However, Mantis_2 outperformed LSBert on
the Potential.10 metric, suggesting that the inclu-
sion of word prevalence can be fruitfully employed
to improve LS systems. In future work, we intend
to explore the role these and additional indicators
of lexical sophistication for substitution ranking.

4Four of the ten performance metrics, Acc@1, MAP@1,
Potential@1, and Precision@1, give the same results as per
their definitions.

246

https://huggingface.co/roberta-large-mnli
https://huggingface.co/roberta-large-mnli

References
Marc Brysbaert, Paweł Mandera, Samantha F Mc-

Cormick, and Emmanuel Keuleers. 2019. Word
prevalence norms for 62,000 english lemmas. Be-
havior research methods, 51(2):467–479.

Mark Davies. 2008. The Corpus of Contemporary
American English (COCA): 560 million words, 1990-
present.

Brendan T Johns, Melody Dye, and Michael N Jones.
2020. Estimating the prevalence and diversity of
words in written language. Quarterly Journal of
Experimental Psychology, 73(6):841–855.

Elma Kerz, Yu Qiao, Sourabh Zanwar, and Daniel
Wiechmann. 2022. Pushing on personality detec-
tion from verbal behavior: A transformer meets text
contours of psycholinguistic features. In Proceed-
ings of the 12th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment & Social Media
Analysis, pages 182–194, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin
Cao, and Ye-Yi Wang. 2016. Intent detection using
semantically enriched word embeddings. In 2016
IEEE spoken language technology workshop (SLT),
pages 414–419. IEEE.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Gustavo Paetzold and Lucia Specia. 2017a. Lexical
simplification with neural ranking. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 34–40.

Gustavo H Paetzold and Lucia Specia. 2017b. A sur-
vey on lexical simplification. Journal of Artificial
Intelligence Research, 60:549–593.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, Yang Shi,
and Xindong Wu. 2021. Lsbert: Lexical simplifi-
cation based on bert. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:3064–
3076.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, and Xin-
dong Wu. 2020. Lexical simplification with pre-
trained encoders. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8649–8656.

Horacio Saggion, Sanja Štajner, Daniel Ferrés,
Kim Cheng Sheang, Matthew Shardlow, Kai North,
and Marcos Zampieri. 2022. Findings of the tsar-
2022 shared task on multilingual lexical simplifica-
tion. In Proceedings of TSAR workshop held in con-
junction with EMNLP 2022.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications, 4(1):58–70.

Sanja Štajner. 2021. Automatic text simplification for
social good: Progress and challenges. Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2637–2652.

Sanja Štajner, Daniel Ferres, Matthew Shardlow, Kai
North, Marcos Zampieri, and Horacio Saggion. 2022.
Lexical simplification benchmarks for English, Por-
tuguese, and Spanish. Frontiers in Artificial Intelli-
gence, 5.

Daniel Wiechmann, Yu Qiao, Elma Kerz, and Justus
Mattern. 2022. Measuring the impact of (psycho-)
linguistic and readability features and their spill over
effects on the prediction of eye movement patterns.
arXiv preprint arXiv:2203.08085.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

247

https://doi.org/10.3389/frai.2022.991242
https://doi.org/10.3389/frai.2022.991242

A Appendix

Table 1: Official results across 7 performance metrics (Acc@1, MAP@1, Potential@1, and Precision@1 give the
same results as per their definitions)

Rank Team Run ACC@1 ACC@1.1 ACC@3.1 MAP@3 MAP@10 Pot@3 Pot@10
1 UniHD 2 0.8096 0.4289 0.6863 0.5834 0.2812 0.9624 0.9946
2 UniHD 1 0.7721 0.4262 0.571 0.509 0.2092 0.89 0.9436
3 MANTIS 1 0.6568 0.319 0.5388 0.473 0.2193 0.8766 0.9785
4 UoM&MMU 1 0.6353 0.2895 0.5308 0.4244 0.1951 0.8739 0.949
5 LSBert-baseline 1 0.5978 0.3029 0.5308 0.4079 0.1755 0.823 0.9463
6 RCML 2 0.5442 0.2359 0.4664 0.3823 0.1887 0.831 0.9436
7 RCML 1 0.5415 0.2466 0.4691 0.3716 0.1799 0.8016 0.9115
8 GMU-WLV 1 0.5174 0.2493 0.4477 0.3522 0.16 0.7533 0.8981
9 CLLabPICT 1 0.5067 0.2064 0.4021 0.3278 0.1369 0.7265 0.8042

10 UoM&MMU 3 0.4959 0.2439 0.4235 0.3273 0.1461 0.756 0.9088
11 teamPN 2 0.4664 0.1823 0.3378 0.2743 0.0975 0.6729 0.7506
12 MANTIS 3 0.4611 0.2117 0.4235 0.3227 0.1673 0.7747 0.9436
13 teamPN 3 0.4504 0.1769 0.3297 0.2676 0.0936 0.6648 0.7399
14 teamPN 1 0.4477 0.1769 0.3297 0.2666 0.0937 0.6621 0.7453
15 PolyU-CBS 3 0.4316 0.2064 0.3297 0.2683 0.1178 0.6139 0.7747
16 MANTIS 2 0.4209 0.1662 0.3565 0.2745 0.1507 0.7131 0.9517
17 PresiUniv 1 0.4021 0.1581 0.3002 0.2603 0.1136 0.6568 0.7962
18 PolyU-CBS 1 0.3914 0.1823 0.3002 0.2576 0.1113 0.5924 0.7533
19 CILS 3 0.386 0.1957 0.3083 0.2603 0.1267 0.5656 0.638
20 CILS 2 0.3806 0.1903 0.3083 0.2597 0.1262 0.563 0.6434
21 PresiUniv 3 0.378 0.1474 0.2573 0.2277 0.0897 0.5656 0.6327
22 CILS 1 0.3753 0.201 0.3109 0.2555 0.1235 0.5361 0.63
23 Cental 2 0.3619 0.1152 0.2788 0.2573 0.1271 0.6541 0.8418
24 TUNER-baseline 1 0.3404 0.142 0.1823 0.1706 0.0546 0.4343 0.445
25 PolyU-CBS 2 0.319 0.1447 0.2573 0.1973 0.0901 0.512 0.7104
26 GMU-WLV 2 0.2815 0.0804 0.2493 0.1899 0.12 0.563 0.8981
27 Cental 1 0.2761 0.1313 0.2117 0.1635 0.0707 0.378 0.4182
28 UoM&MMU 2 0.2654 0.1367 0.268 0.182 0.0794 0.4906 0.6756
29 PresiUniv 2 0.26 0.1018 0.1554 0.135 0.0439 0.3136 0.3163
30 twinfalls 1 0.1957 0.0509 0.1233 0.1175 0.0535 0.3485 0.5067
31 twinfalls 2 0.1849 0.0643 0.1367 0.1182 0.0514 0.3565 0.4664
32 NUHLT 1 0.1447 0.067 0.1179 0.0902 0.0301 0.26 0.2895
33 twinfalls 3 0.0455 0.0107 0.0455 0.037 0.0182 0.1474 0.3619

248

Table 2: An example instance from the trial dataset with gold annotation candidate list provided by the organizers

Sentence A Spanish government source, however,
later said that banks able to cover by
themselves losses on their toxic property
assets will not be forced to remove them
from their books while it will be com-
pulsory for those receiving public help.

Complex word compulsory

Gold annota-
tions

mandatory, mandatory, mandatory,
mandatory, mandatory, mandatory,
mandatory, mandatory, mandatory,
mandatory, mandatory, required, re-
quired, required, required, required,
required, required, essential, forced,
important, manadatory, necessary,
obligatory, unavoidable

Table 3: Overview of the 77 features considered for Substitution Ranking

Feature group N Examples/description
Lexical Sophistication 14 Mean length/word,
Density and Diversity N Words on NGSL,

Corrected TTR
Register-based 25 N-gram freq.
N-gram Frequency (N = 1-5)

five subcorpora
from COCA
(Davies, 2008)

Psycholinguistic 38 Age of Acquisition,
Word Prevalence
(corpus-based),
Word Prevalence
(crowdsourced)

249

P
re

ci
si

on
.1

0
P

re
ci

si
on

.8
P

re
ci

si
on

.6
P

re
ci

si
on

.5
A

C
C

.2
.T

op
1

P
re

ci
si

on
.1

A
C

C
.1

P
re

ci
si

on
.2

M
A

P
.3

R
ec

al
l.2

A
C

C
.3

.T
op

1
M

A
P

.4
P

ot
en

tia
l.1

0
P

ot
en

tia
l.8

P
ot

en
tia

l.4
A

C
C

.5
.T

op
1

A
C

C
.4

.T
op

1
M

A
P

.1
0

M
A

P
.6

M
A

P
.7

P
ot

en
tia

l.5
R

ec
al

l.9
A

C
C

.9
.T

op
1

R
ec

al
l.6

A
C

C
.8

.T
op

1
A

C
C

.7
.T

op
1

ACC.7.Top1
ACC.8.Top1
Recall.6
ACC.9.Top1
Recall.9
Potential.5
MAP.7
MAP.6
MAP.10
ACC.4.Top1
ACC.5.Top1
Potential.4
Potential.8
Potential.10
MAP.4
ACC.3.Top1
Recall.2
MAP.3
Precision.2
ACC.1
Precision.1
ACC.2.Top1
Precision.5
Precision.6
Precision.8
Precision.10

Figure 2: Heatplot of intercorrelations (Pearson r) of evaluation metrics (ns=50). Mean r = 0.920, sd = 0.071. Ranks
of the three runs submitted were constant across metrics (run1 = 3, run2 = 12, run3 = 16).

250

